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Part I

MULTIPLE SCATTERING OF POLARIZED LIGHT BY ANISOTROPICALLY

SCATTERING SPHERICAL PARTICLES IN A PLANE PARALLEL MEDIUM OF

ARBITARY OPTICAL THICKNESS-THEORY

Abstract

A theory of the multiple scattering of polarized light is

described using the doubling method of van de Hulst. The

concept of the Stokes parameters is derived and used to de-

velop the form of the scattering phase matrix of a single

particle. The diffuse reflection and transmission matrices

of a single scattering plane parallel atmosphere is expressed

as a function of the phase matrix and the symmetry properties

of these matrices are examined. Four matrices are required

to describe scattering and transmission instead of the usual

two as in intensity only theory. The scattering matrix that

results from the addition of two identical layers is derived.

By this doubling method the scattering and transmission

matrices of layers of arbitrary optical thickness can be

derived. The doubling equations are then rewritten in terms

of their fourier components. Computation time is reduced

since each fourier component doubles independently. Com-

putation time is also reduced through the use of symmetry

properties as well as by other methods discussed.

1



I Scattering from *a Single Particle - The Stokes Parameters

In this section we will develop a method to fully describe

the state of polarization of an arbitrarily polarized parallel

beam of light. .We shall show how to represent the scattering

from a single particle in terms of the Stokes matrix and the

Stokes vector. Some physical insights into the meaning of the

Stokes vector shall also be developed. In the interests of

brevity many results and theorems on polarized light will not be

proved, since they are the result of the work of others. The

1
reader is referred to Chandrasekhar's book, Radiative Trans-

fer (herein abbreviated R.T.), for further discussion of some

points.

An arbitrary beam of light can be regarded as a mixture of

a completely polarized beam and a completely unpolarized inde-

pendent beam. We mean by unpolarized and independent that the

electric fields, resolved along two perpendicular vectors normal

to the direction of propagation, that is, in the transverse plane,

will show no permanent phase correlations with each other and

will have equal amplitudes. The perpendicular electric vectors

of the polarized beam, while having no permanent phase, do retain

a permanent phase difference 6.

* Let a and B be the time varying uncorrelated phases of the

electric fields of the unpolarized beam. Let "1" and "r" refer

to directions parallel and perpendicular respectively to a plane,

as yet unspecified, which contains the direction o.f propagation.

2



3

These directions then lie in the plane transverse to the direc-

tion of propagation. The sense. of the two unit vectors +1 and

+r is chosen such that +r x +1 is in the direction of propaga-

tion. Then the beam may be represented by the real part of the

complex electric vector E(t).

E(t) = Er(t)+r + El(t)$

1.1

= (Erei6 + Euei )eiwt. r + (E
1

+ Euei )eiwt+
1

Ev is the amplitude of the unpolarized component of the electric

field. The symbol ^ means a complex quantity and " will mean

complex congugate.

The four quantities Er, El, Eu and 6 determine the.state of

polarization. Because of their unsymmetric nature, another set.

of quantities is preferred. These are a set of parameters simi-

lar to a set introduced by Sir George Stokes in 1852. They form

a representation commonly called the Stokes-vector

I = [I1, Ir, U, V]

The meaning of these four quantities is next defined., In

what follows'the symbol <> means the time average of the quanti-

ty within, the brackets. Thus for example <ei · ei > = 0 and
A A . 'i'

<E1 Euei > = O. Then

^ A 2 2
I - <E E'*> E E + E

1.2
I A <2 2

I <E E *> = E + E
r r r r 
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U = 2Re<E · E*> = 2E1E cos 6

1.2

V E 2 Im<Er E1*> = 2E1E
r
sin 6

Care must be taken in the sign of V as a minus sign can easily

be mislaid. Here 6 is the amount that Er leads E
1
when viewed

against the direction of propagation.

An alternate set of Stokes parameters is the set [I,Q,

U,V]. They are related to the previous set by the relations:

I I1 + Ir

Q = I I
r

They will be used interchangeably with the first set whenever

they will help simplify an expression. The first set, however,

will be preferred in the equations we shall see later.

Some discussion of the physical meaning of the Stokes par-

ameters at this time would be in order. Assume that the beam is

completely polarized. Then Eu is zero. The end point of the

electric vector

E(t) = (Erei(6 + Wt))
r

+ Eleit l+

sweeps out an ellipse in space, figure 1.1. The ellipse is tilted

by an angle X, which is sometimes referred to as the plane of

polarization. X is positive when measured clockwise from +1'

tan 2 x = U/Q. Note also that for a fully polarized beam

12 = Q2 + U 2 + V 2

The ratio of the semimaJor axes of the ellipse, tan B,
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r

Figure 1.1 Elliptical polarization..

incident ray
- S
fE r

Figure 1.2 The scattering event in the coordinate system of the
scattering plane.

Eri--i
~Er



6

is given by
V

sin 2B = +/ 
sQ2 + U2 + V2

See R.T. p25-28 for derivation.

For natural, unpolarized, light Q = U = V = 0. Complete

linear polarization occurs when I = +Q and U = V = 0. Complete

circular polarization occurs when E
r

leads or lags E1 by 900

and there is no unpolarized component. Then I = +V and

Q = U = 0. The polarization is right handed or left handed as

the sign of V is positive or negative respectively. Right

handed polarization means that when viewed against the direction

of propagation the electric vector turns in a clockwise direc-

tion.

The previous relations were skipped over rather quickly

without any derivation. They are useful relations but the

mathematics necessary to derive them is not worth repeating as

they can be found in the references cited. Of more importance

to lat'er work is some physical rather than mathematical insight

into the Stokes parameters. It is already apparent, because of

the representation chosen that Q represents the excess of para-

llel over perpendicular linearly polarized light. It is less

obvious that both U and'V lend themselves to the same kind of

interpretation.

If we chose 2 new perpendicular axes "q" and "p" rotated

450 from "1" and "r" then it can be shown that U is the excess

of "q" over "p" linearly polarized light. V, as we shall show,

is the excess of right handed over left handed circularly

polarized light.
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To do this we chose a new set of unit vectors to replace

those of equation 1.1. If we choose 6 = r/2, Eo = E
r

= E
1
,

Eu = 0, then V = I, U = Q = 0 and we have a right handed cir-

cularly polarized beam Eo(+1 + iir)eit. Thisleads us to the

choice of 2 new unit vectors 4+ and +_ defined by

''1- + i~r
+= - 4

In terms of these new basis vectors we may represent an

arbitrarily polarized beam in an alterrte way

^(t) = (E+ e16 + E + Eu(ei a + eiB))eit +

1.3

+ i(E+ ei - E + Eu(eia -ei ))eiWt+

This also allows circular and linear representations to be

interrelated.

Now from equation 1.2,

V = 2Im<Er E 1*>

= E 2

Thus we see V is the amount by which right handed circular

polarization exceeds left handed circular polarization.

Now let us describe the transformation of the Stokes par-

ameters due to scattering off a single spherical particle.

Consider-a parallel beam of light having an arbitrary state of

polarization incident on the particle. The situation is shown

in figure 1.2.

Now we define "r" and "1" to be directions perpendicular

and parallel to the scattering plane defined by incident ray
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"i" and scattered ray "s". e is the scattering angle and is

zero for undeflected light.

For spherical particles the transformation properties of

the scattering process can be described in terms of electric

fields by

1.4 iA 1(j) 0 E1

0 A2 (Q) rErS () 0 A2(O )Er

Al and A 2 are complex function of 0 having no time depend-

ence . The off diagonalterms are zero only for particles having

spherical symmetry. For any other type of particle they are not

zero. Spherical particles rarely occur in nature, but unfor-

tunately we cannot easily calculate these four quantities unless

we assume the particles are spherical. This will be assumed in

all that follows.

We will now derive the transformation matrix for the Stokes

parameters thus putting equation 1.4 in a more facile form. Fr-om

the definitions in equation 1.2 we have

I <E ES*> (A1 Al*)I
1 1

Us = 2Re<E ES>
A A A A

A A
= Re(A2 A*)U1 - Im(A2 * A1)V

V = 2Im<E s El>
A ^ + A ^ )Vi

= Im(A2 Al*)U + Re(A2 Al*)V

This follows from the following easily deriveable ident-

ities:
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Re(X-Y) = Re(X)Re(Y) - Im(X)Im(Y)

A A A A A A

Im(X-Y) = Im(X)Re(Y) + Re(X)Im(Y)

We can now write down the transformation law that describes

the changes in the stokes vector of the outgoing wave due to the

scattering from a single spherical particle:

ys =) i
I P(O) I

Is 0 P 0 0 Ir r
1.5 P2

U I 0 0 P3 -P4 U

vs ,0 / 0 P4 P3 V

where

P1 (G) = Al-Al*

P 2(®) = A2'A2*

P 3(®) = Re(A2 -Al*)

P4(0) = Im(A2'Ai*)

These functions, Pi( 0), are also functions of the real and

imaginary parts of the index of refraction, the size of the

particle and the wavelength of observation. They were produced

by a Mie program written by J. V. Dave which is available upon

request from I.B.M. We defer until later a discussion of Mie

theory since it would interrupt the development we have started.

At this point however it is useful to change our point of

view from single scattering on a. single particle to single

scattering on many particles. In the computer program that

parallels this theoretical development we use:for Pi the Stokes

matrix elements averaged over a poly-dispersion of particles.
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In doing this we make many assumptions. The spherical particle

is replaced with a spherical volume element large enough to con-

tain a statistically homogeneous collection of particles which

perform random motions in time scales short enough so that there

are no permanent phase correlations in the radiation scattered

off the various particles during the period of observation.

Otherwise the scattering theory would have to be expressed in

terms of the complex amplitudes Al and A 2 instead of the inten-

sity coefficients Pi. In the case of scattering from stationary

objects such as radar return from boulders on the moon the above

assumption does not hold. In this case, however, the use of

intensities rather than complex amplitudes can be justified by

introducing an ensemble average over a small portion of the sur-

face. Then if the surface moves, i.e. a rotating planet, the

procession of the scattering elements across the line of sight

is equivalent to a time average that can by the application of

ergodicity, be set equal to the average over the distribution

of scatterers. R. Ruffine3 has shown' that replacing time aver-

ages with ensemble averages results in an error of less than

10% for the radar cross sections predicted for 600 sec integra-

tions of the radar return. The error in the measurements will

generally be higher for the applications we shall have since

instrumental calibration of the radar is only good generally

to -3 db.

We implicitly make some further assumptions as to the char-

acter of the spherical volume element. We assume that we can
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take the volume large enough to encompass a statistically repre-

sentative sample of particles, yet small enough so that there

is no difference in intensity or polarization between light

illuminating the front and rear hemispheres. When we begin

discussing multiple scattering we will also assume the particles

are far enough apart so that each particle is illuminated by

plane waves. These properties are hard to realize in practice

but scattering theory generally gives good results in spite of

this.

So far in 'our discussion we have referred the Stokes

matrix to a.set of axes defined by the scattering plane, the.

plane formed by the incident and scattered rays. But the

scattering plane.has no particular orientation in space and

changes for successive scattering events. We will need to

describe the scattering .event in terms of a fixed coordinate

system, independent-of the scattering plane. To that end we will

need a law for rotation of the axes about the direction of prop-

agation.

Assume that:the axes along which we measure the polarization

properties has been rotated in the clockwise direction by an

angle. , figure 1.3.

Note that in figure 1.3 the direction of propagation is out

of the page. This is the convention we shall use, that is, the

Stokes parameters will always be referred to propagation towards

the observer.

The rotational transformation for the electric fields now
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r

Figure 1.3 Rotation of coordinate axes.

Figure 1.4 Scattering in a coordinate system independent of the scattering

plane (shaded).

r

y

X



13

becomes

1..6 =
y sin $ cos Er

since E-is a sPacial vector.

We will now derive the rotational transformation for the

Stokes vector. Writing equation 1.2 in terms of the new axes

X and Y we have

I = <E E *>
x x x

I- <E · E *>
Y Y Y

1.7 ^ ^
U =2Re,<E -E *>

y x

V =2Im<E E *>
y x

Now substituting equation 1.6 in equation 1.7 and using the

definitions of Il, Ir, U, and V from equation 1.2.

Ix = cos2 5I1 + sin2 ~Ir + -sin24U
2

I y sin2 I
1

+ cos2 Ir - -sin2rU

1.8

US = -sin2I1 + sin 2 $Ir + cos25U

V V

Thus rotating the axes of observation-through an angle ¢
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in the clockwise direction has the effect of subjecting the

Stokes vector, I, to the transformation L(¢).

where

cos2 5 sin2 ¢ -sin2 0\

1.9 L(Q) = sin2P cos 2 -sin2 
2

-sin2p sin24 cos25 0

0 0 0 0

We are now prepared to describe the scattering in a

coordinate .system independent of the scattering plane. The

scattering process in the new coordinate system is shown in

figure 1.4.

Light in the meridian plane OX1 Z enters the diagram at

X1 making an angle 8' with the local normal, OZ, to the x-y

plane. It is scattered at 0, and leaves at X2 traveling in

the meridian plane OX2Z, with an angle of emergence 8. The

definition of the variables we shall use are clearly marked

on the diagram but they still need some discussion. A consis-

tant definition of azimuthal directions is needed because

azimuth related considerations are the source of more errors

than all other considerations combined. (For intensity only

calculations, on the other hand, azimuth does not require

special attention.) We shall take as our definition of azi-

muth the angle in the x-y plane, measured from the arbitrary x

axis, made by that meridian plane of the beam through which the
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radiation entered the sphere, or, extending backwards along the

direction of propagation, would.have entered the.sphere. On

the other hand we measure e and 0' from the points at which the

light actually does pierce-the sphere. In this we use a dif-

ferent convention than is usual, but it has the advantage of

making the scattering and transmission matrices that we shall

introduce later on more similar in notation and symmetry prop-

erties to the phase matrix. This is a decision based originally

on computer considerations alone since in this way the computer

program algorithm is more similar to the equations on .which it

is based.

Until now the abbreviations "1" and "r" in the Stokes

vector has referred to directions parallel and perpendicular to

the scattering plane X1 0OX2. Ifwe now redefine "1" and "r" as

being directions parallel and. perpendicular to the meridian

plane that the beam is in, then we must rewrite the Stokes

matrix in terms of this new definition. 1i( 0 ',t') can be trans-

formed to the directions necessary for using the Stokes matrix

in equation 1.5 by applying to it the linear transformation

L(ii), where ii is the angle between the scattering plane X1OX2

and the meridian plane OX 1Z through the point X1(=(e0',')).

The ies-ilting expression

1.10 P()L(il)Ti

describes the Stokes vector at P 2 in terms of direction parallel

and perpendicular to the plane of scattering. Note 'that!

i
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for convenience i has been written to replace S-O. To trans-

form 1.10 to our new set of coordinate axes, we must apply

L(-i2 ) where i2 is the angle at the point X2(=(O,¢)) between

the meridian plane OX2 Z and the scattering plane X1 OX2.

The angles ii and -i2 used in the rotation of coordinates

are not immediately obvious. In deriving then we must remember

the convention that all angles are positive if the direction of

rotation is clockwise when the direction of propagation is to-

wards the observer. We must also carefully follow the direc-

tions "1" and "r" in the scattering plane and rotate "1" into

the meridian plane so that it points upwards in figure 1.4.

The equation for the scattering process in the new coor-

dinate system now becomes

-s i
1.11 I = L(_i2)P(p)L(ii)Ii

I (e,p) = R(e,, a t f,) i(',, ')

where

cos 2i2 sin2i2
'

-0sin2i2 0

sin2 i 2 cos2i 2 0
1.12 R=2

+sin2i2 -sin2i2 cos2i 2 0

0 0 0 0O

P1(p) 0 0 0

0 P2(WP) 0 0

0 0 P3 (W) -P 4 (p)

0 0 +P4(~) P 3(p)/
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Cos 2i sin2 i + sin2il 0

sin2 ii cos 2i, -4 sin2ii 0
~~~x TS~~2

-sin2i1 +sin2il cos2ii 0

0 0 0 1

Unfortunately there are no simple relations between the

variables i1 ,i 2 ,P and 8,,8',"'. From spherical geometry we

get the following results.

1.13 ~ ~ = cos-l(cosecosO'-sinOsine'cosAq)

sin i2 = -sine' sinA sin ii sin sin
sin. ' sini

sin;sin~ sine=sins

where AS = $'-S and we have used the results

cos(X+Tw) = -cos -X

sin(X+r) = -sin X

We shall write out equation 1.12 in full:since we will

need to refer to individual terms later on when we discuss

symmetry relations and fourier coefficients. For the conveni-

ence of later discussion we make the change of variable P + cose

and P' - cosO'. Define R' by-.

R(~,P' $'-$) = Q *R'(. ,~'S'-S)

where Q is the diagnol matrix

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

l
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The need for Q arises out of the non-symmetrical nature of I1,

I on the one hand and U,V on the other. The matrix R' is
r

defined in terms of its components as

R' 11=PIcos 2 ilcos 2 i 2 + P2sin2ilsin2 i2 + ±P 3sin2iisin2i2

R' 12 =Plsin2 i 1cos 2i2 + P2 cos2 ilsin2i2 -+P 3sin2ilsin2i2

2R'2 1=Plsin2i2 cos 2i1 + P2 cos2i2sin2 il- 2P 3sin2i 2sin2il

R'2 2 =Plsin2 ilsin2i2 + P2cosi2i 2 + P2i2 + isP3in2isin2isin2i2
1.14a

R'331Plsin2sin2i2sin2i2 + Psin2i2 Pos2i + os2i2~~4 4~~~~~~ 2

R' 34= - 1P4cos2i22

R' 4 3= +-P 4 cos2il2

R' 4 4 = +P3

R'13=-(Plsin2ilcos2 i, - P2sin2ilsin2i2 - P3cos2ilsin2i2)

R' 3 1=-(Plsin2i2cos 2 i1 - P 2sin2i 2sin2 ii - P 3 cos2i 2sin2il)

R' 2 3 =L(Plsin2ilsin2 i 2 - P2 sin2ilcos2 i2 + P 3 cos2i1 sin2i 2 )

R'3 2-=(P1sin2i2sin2 il - P 2 sin2i2cos2 il + P3cos2i2sin2il)
1.14b

R'14=++P4sin2i2

1
=-P4sin22

R' 4 2-+P3sin2il

The components have been separated into two groups for ease

of discussion of their different properties later on. We shall

call matrix R, the phase matrix.

We shall not discuss the symmetry properties at length

since an extensive treatment has been published by J. W. Hovenier.
4
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He uses the [I,Q,U,V] representation of the Stokes vector so

his phase matrix is different in form than the one we have de-

rived. In addition, because of different definitions of e,e'

and c, his symmetry relations for the phase matrix are differ-

ent than ours. However, his definition of the p,v', and $ of

the scattering and transmission matrices, which we shall intro-

duce soon, is the same and so we may compare our equations with

his directly. Hovenier has derived all of the symmetry proper-

ties ·of the phase, scattering and transmission matrices. Of

'these we will only-need a few. They all follow from equations

1.13 and 1.14 and a casual examination is all that is necessary

to convince oneself of the validity of any one of them.

I have found it more convenient, conceptually, to visualize

the symmetry properties of the phase matrix in terms of three

unorthodox symmetry operators X,Y,Z.

+ + + ++ + +

As 'an example of their use, the action of X on an' arbitrary

matrix A is written B = X * A and defined in terms of compon-

ents by Bij = Xij Aij, summation not implied. 'Thus X,Y,Z can

be regarded as templates to be placed-over the matrix to indi-

cate sign changes. Under this definition X * Y = Z. We shall

indicate by the tilde, a', the transpose of a matrix.

I
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1.16a = Z*R'(i,',$'--)

1.16b =

1.16c =

1.16d R'(-,-W',$-$') =

Equation 1.16a expresses the fact that those elements

which have a minus sign in matrix Z are odd functions of $'-$,

and those with a plus sign are even functions of $'-$. This

will be important later on when we fourier analyze each matrix

element. The odd functions will be expressable, as a sine

expansion and the even functions as a cosine expansion. Equa-

tions 1.16b and 1.16c are of interest theoretically, but we

shall use them Just to reduce redundancy and thus increase the

speed of the computer computation.



II Reflection and Transmission.Matrices from a Single

Scattering Layer and their Symmetry Properties.

In this section we shall derive the diffuse reflection and

transmission properties of a single scattering, plane parallel

atmosphere. These will be expressed as functions of the phase

matrix we have already derived. We:shall also examine the

symmetry properties of these matrices with a view towards re-

moving computational redundancy later on. We will find that

we need four of these matrices instead of the usual two for

intensity only calculations.

Consider a parallel beam of light of net flux.

TF = 7(F1,Fr,Fu,Fv )

per unit, area normal to the direction of the beam in.the four

Stokes parameters, incident .from above in the direction (p'?,'),

on a plane parallel atmosphere of optical depth T. The distinc-

tion "from above" is important. We wish to express the laws of

diffuse reflection.and transmission in terms'of a scattering

matrix S(T~j,p,¢'pt' ) and a transmission matrix i(T;1,v' ,'-c)

such that-the intensity reflected upwards and the-intensity

transmitted downwards are given by

= .p-ii.) = S(¶;1J V! t -.)F

1.17*

and T(T,-V,p;i' 't) =1- T(-T; ,V t, -F )F

The factor 1/v has been added to insure similar symmetry

properties to those mentioned for the phase matrix.

21
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We shall now derive S and T for light that has been scat-

tered only once in the layer. Consider that portion of the

atmosphere between T' and T' + dT'. At that depth a fraction

e will have penetratedwithout havingundergone scattering in

the atmosphere above. The contribution to the diffuse light in

the direction (i,4) from the reduced intensity that penetrates

to this depth and is scattered is

e-T/ R( ' F dT'

where R is the phase matrix given, by equation 1.14.

A fraction e T/v emerges from the layer in the direction

(p,$) without undergoing further scattering. Thus the contri-

bution to the diffuse intensity in the direction (i,4) from

light that has been scattered once between T' and T' + dT' is

e-T/pe-T '/P t.
See R.T., page 145.

0 '

The total intensity from a layer of optical depth T is Just the

integral of this expression over T'

1 +
[1-e V' (+

In a similar manner we can derive the diffuse intensity trans-

mitted down in the direction (-V,4). We find
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I(T;-p1,;pWpt'q) e= [eT -eT/' ) ((- i'--)

We can now write down the scattering and transmission matrices

for singly scattered light.

1 1

1 1 -1 e _
[l-e -(';uu' ,F' - ) = (U + 1' ) [l-e e + ' ) ] R(p,' ,~'-.)

1.18

_ 1, - -( - T/p) e-T/p R-

In the limit as T -+ 0, the coefficients of R in equations 1.18

are just r for both S and T. Notice that interchanging p and

p' in equations 1.18 does not change the value of the coeffic-

ients.

We shall now discuss the symmetry properties of the scat-

tering and transmission matrices S' and T' defined in terms of

S and T by

S =Q S'

T = Q .S'

We shall give the same names to both the.primed and unprimed

matrices. It will be clear from the context which is meant.

From-equations 1.16 we may write down immediately the

results

(,p-.) = Z * S'(p,p',cP-t )

l.19a 
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l.19b = X* '

l.9c T'(' '-) = Y * '(,''-)

So far we have discussed two of the four matrices that will

be needed. The need for the other two results from the fact

that S and T cannot express. the reflection and transmission of

radiation incident from below the layer. This fact has sometimes

been overlooked in the literature where it generally assumed that

intensity equations are completely generalizable to polarization

equations. Specifically, it was overlooked in Chandrasekhar's

Radiative Transfer, where he states on page 170 that his invar-

iance equations for intensity can be generalized to polarization

by replacing the functions S and T by the matrices S and T.

To allow for this case we define two new matrices. S* and

T* such that the light scattered downwards from below is

1.20a I(;-,~;- ' )= (;F.

and the light transmitted upwards from below is

1.20b, T(0;W,$;-W',)= *(z ,$' $)F.

We can express S* and T* in terms of S and T if we make

use of the properties of the original phase matrix. From 1.16d

we have

1.21a S*'(u.u'.$'-$)=S;¢u.u'.~-')



25

and

1.21b

Physically, the need for S*' and T*' as well as the rever-

saal of the azimuth direction comes about because the use of the

unstarred matrices to express scattering from below would result

in measuring azimuth in the opposite direction than scattering

from above. The definition of azimuth is tied to the direction

of propagation.

The symmetry relationships for S*'and T*' are exactly the

same as those for S' and T' expressed in equations 1.19.



III Reflection and Transmission Matrices from a Multiple

Scattering Layer -- The Doubling Method.

We now have four matrices which completely describe the

reflection and transmission properties of a single scattering

plane parallel layer of any optical thickness. In this next

section we shall see how to combine two identical layers using

a generalization of Van de Hulst's5doubling method. We will

then have the reflection and transmission matrices of a layer

of twice the optical thickness which multiply scatters the

light between the top and bottom halves. If we begin the

doubling with a layer whose optical thickness is so small that

only single scattering is present, we can derive the multiple

scattering properties of a layer of any optical thickness by a

sufficient number of doublings.

To derive the generalized doubling method it will be con-

venient to define some shorthand notation. We assume the

incident intensity to be a parallel beam of net flux TF in the

four Stokes parameters. It is a delta function in direction and

,we write it

I = TF6(- - qo )

or I = 7rF

The diffuse intensity reflected from and transmitted through the

layer is

-s F
I =

26
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t = T ll oF
t = T('~H, o,$o- $)T-

or

-s 1 -
Is = 1 SF

-t 1I = 1 TF

Matrix multiplication is implied. If a diffuse.intensity

I(po,,o) is incident on a layer the diffuse intensity reflected

and transmitted will be

Is =1 1 T -2-
· (,0 0

T(P' ,') dp'd$'

It 1 2T -ft - 1 0 

We will-write this as

1 == 1 S I

t 1 =
It =t T ' I

where the symbol "'" means

r 1 2o o

Tf Jo dI'dI'.

It also will be useful to define another operation "O" defined by

1 o d 'd2'

so that we may write

1 1 2 - -7

rf Jo J (p ' f.v () ,fo, o-T ') du'd~'o'l o

T(p', ') dp'd$'
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as

-S o T

It can easily be seen that associative rules hold for the

operators "'" and "o". Thus for example

S o T o S = S o (S T) o S

S o T F = (S o T) F = S o (T F)

and

S o T I= (o T) I = So (T I)

Now consider the situation in figure 1.5. Two layers of

identical scattering properties are placed together. It is

required to find the scattering properties of the two layers

combined. Light is incident from the direction (po,$O) with

intensity Ii = rF6. The diffuse intensity that is reflected

from the upper layer due to Ii is

1 = -i 1 -P S I = SF

The intensity, both diffuse and direct, transmitted down through

the upper layer is

= Iie-T/° + T Ii
D= IFOe -

T
/ °+ T F

- F6e-T/PJ + TF
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Figure 1.5 Scattering from the sum of two layers.
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The intensity transmitted through the lower layer is

1 = -
1 = 6e-2/U, + T -

D

7rF6= -2T/p T F +e TT/ T F + e T o T F

The diffuse intensity scattered upwards by the lower layer is

U 1 = S · D1

e-T/Uo 
_ e >° -· S F + ;S o T F

The diffuse intensity transmitted upwards by the upper layer is

P 2 Ue- T/+ T* U1

e-T/ e-T/PO -- e-T/ -
- S F + e S o T F

~+ T* o S F + T* o S o T F

The diffuse intensity produced by U1 scattered downwards by the

upper layer is

D2 = ~ S* . U 1

=---:I-- S* o S F + S o S o T F

The diffuse intensity produced by D 2 transmitted downwards by

the lower layer is
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02.= D2 e + 1 T+ -

e - T/1 °e-T/ * o S F + e S* o o - T F

+- e- /T ° T o S* o S F +' T o S* o S o T F

Continuing in this way we find the reflected and transmitted

intensities from the two layers combined. Ignoring the directly

transmitted light, wF6e 2T/1, we may now write down immediately

the reflection and transmission matrices of the two layers com-

bined. They are

S(2T) = S + e T/ Eie T/1o.+ e-T/ E1 o T

1.22a
+.2 e- / 2a + T* o l1 + T* o E1 o T

T(2T) = T(e- T/FI + e- 'T / ° ) + T o T

+ e' T
/ Ez2e- T / P° + e- T/ Z2 o T

1.22b

+ e-T/W° T o 2 + T o 2 o T

where E1 = S + S o S* o S + S o S* a S o S* o S +

and 2 = S* o S + S* o S o S* . S +

Equations 22 are the doubling equations. Note that .2 = S*o 1l.

We have dropped the double lines above the matrices since it will

be clear from now on that matrices are implied.



IV The Doubling Equations - Fourier Components and Symmetry

Properties

It might seem now that the problem of combining layers is

completely solved. In theory these equations could be programmed

into a computer and solved numerically. In practice it is impos-

sible. Present state of the art computers are completely incap-

able of producing accurate answers from these equations for large

optical depths and non-Rayleigh phase functions given any reason-

able time limit. The rest of the discussion of the doubling

equations, therefore, is directed, as its main purpose, to save

computer time.

We shall see how to rewrite the doubling equations in terms

of the fourier components of the reflection and transmission

matrices. We will find that each fourier component doubles in-

dependently. We shall also rewrite the symmetry equations for

these fourier matrices so that we may see which computations in

the doubling equations are redundant.

In order to motivate the analysis of the matrices into their

fourier components, let us compare the amount of computation

necessary for both methods. Let M be the number of fourier com-

ponents, let I be the number of integration points in the i in-

tegration and let K be the number of integration points in the

$ integration. We would expect that K X' I. Then the double

integral in $ and i would require

N = 4 3 x I 3 x K2 = 4 3 x Is operations, symmetry considera-

tions neglected. The cubed term arises because I operations are

32
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needed to integrate each of the 12 sets of points at which the

function is defined in a, '0 space. The single integral that

will appear in the fourier analysed equations requires

NM = 43 x I 3 x M operations. In the case of Rayleigh scatter-

ing, reasonable answers are obtained for I X' 4. M is exactly

3. Thus there is a factor of 5 improvement in computer time

for the simplest realistic case. This improvement factor in-

creases markedly if the.answers are required at more C points

since the fourier components can be recombined at any set of

P points. The improvement increases also as the phase function

becomes more anisotropic.

Consider the four matrices S, S*, T, and T*. Equations

1.21 and 1.19a show that all four have the same symmetry with

respect to $, that is, the terms marked with a "+" sign in

symmetry operator matrix Z, reproduced below, are even functions

of p and those marked with a "-" sign are odd functions of $.

Z I+ +

We may then expand the even terms in a cosine expansion and the

odd terms in a sine expansion.

The fourier analysis will take some discussion. Normally

the mth fourier coefficient of a function is obtained by inte-

grating the function times sin(mp) over the range of interest.
Cos

However this operation has to be done numerically and a moment's

consideration will reveal that as m increases the number of

integration points, which must be much greater than m, must
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increase as well, no matter how smooth the function. This seems

to be requiring more information from the function than should

be needed.

There exists another, not well known, approach by which

even functions having fourier coefficients up to order N and

odd functions having fourier coefficients up to order N-1 can

be analyzed using exactly N+l evenly spaced points. Assume

we have an even or odd function f(X) with a period 2r and which

is known at 2N+l equally spaced points from -r to w. Denote

the 2N points from -r to r by Xi = i x 7 , i = -(N-l),..., N

where we have not included -w in the set since f(-r) = f(W)

implies that -w is not an independent point. If f(X) can be

resolved exactly using 2N-1 fourier coefficients in sine and

cosine then we may write

N-1

1.23 f(Xi) = ao + Z ak cos(kXi)
k=l

(The method below using 2N points gives enough information to

determine aN for the cosine term so that 2N points would yield

2N coefficients. However we will require sine and cosine four-

ier coefficients of similar orders so that the Nt h order cosine

coefficient will not be of use to us here. The neglect of aN

in 1.23 will still permit the other ak's to be found uniquely.)

Conventionally we would multiply by cos mX or sin mX and

integrate. Instead,

sin sin N-1 sin sin(mX )
f(xi cos (mXi = a o (mXi + ak (kX

i
Cos i)i i k=l i
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N
where C = Z

i i=-(N-l)

It is possible to prove the following relations:

Z cos kX i cos mXi = 0 m # k

Z sin kX
i
sin mX

i
=O m F. k

i

Z sin2 -kX = N k O0
i

E cos2 kX
i
=.N k . O,N

i

E cos2 NXi =.r 1 = 2N
i i

Then we have immediately

1 N
aO =2Nf.(Xi) f(X) even

i=-(N-1)

a, = 0 , f(X) odd

1 N sinam -(N -1) f(Xi) (mxi
)· Cos

Since f(Xi) is even or odd in X we may write

2 sin
am =N bi f(Xi.) s(mXi)m i cos

i=0

where b
i

= 1 i Q O,N

bi = 1/2 i = OjN

N
ao = E E bi f(Xi ) , f(X) even

i=0

= 0 , f(X) odd.
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It will be convenient notationally if we redefine the co-

efficients a
m

to be

1 sin
1.24 am -2N bi f(X) s mXi), m = 0, ..., N - 1.

i=o

We must rewrite equation 1.23 in terms of this new definition

of a
m
. Equation 1.23 now takes the form

N-1
1.24 f(X) = 'E (4- 26om) a

m
cos (mX)

m=o

We are now ready to proceed with the fourier analysis of

the matrices themselves. We have shown how to compute the

fourier component numerically. Under the definition of the

fourier components given by equations 1.24 and 1.25 we rewrite

the standard fourier analysis-synthesis equations as

1.26 f(q) = ffm (4 - 2m) sin (m)
cm cos

m

2w
where ffrn = 1 sin (mS)d~

7 T Coos

Consider now as an example the equation

1.27 A = SoT

1 2wrr

o o
or !(cO-c) = 1 f F T1-d

0 0
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The variable p,p', and po have been suppressed for con-

venience. Matrix multiplication is implied.

The inner integral is the integral over $ of 64 separate

functions. If we write both S and T in the form of equation

1.26 and denote the fourier coefficients by SS and TT then,

equation 1.27 becomes

1.28 AAmd sin(m(-)) =
mcosm

1 2 7T n---m sinm dp'l | ) ESS d mco
s

s -'))d'm v where
7 mc os m mcos

o om m

d = (4-26 ) m om

Equation 1.28 needs some explanation. The equation is still

a matrix equation with matrix multiplication implied between all

m m sin
the SS and TTm terms. The term now means that each com-cos

ponent should be expanded in cosine or sine depending on

whether it is even or odd. Equation 1.28: eads immediately to

the statement that all fourier components double independently.

To prove it, the equation must be written out in full and use

made of the standard orthogonality relations between cosine

and sine. We will not do thathere since the proof is as ted-

ious as it is obvious.

The 64 separate. expressions 'on the righ-t side of equation

1.28 are each of the form

1 2i m m k sin 4 T TT d
7r. 0j ik kj mcos cosumma-



38

tion over k is performed.

There are 4 possible integrals indicated here. Their

values are, neglecting the constant coefficients,

f sin sin dW' = -r cos m (o0-c)

fcos cos dS = 4r cos m (o-4)/d
m

1.30
fsin cos dS' = 7 sin m ($o-~)

fcos sin d~'= wr sin m (o,-$)

The factor 4/dm (=1, m + 0; = 2, m = 0) appears only for

the 'cos cos' term, but we may multiply the 3 other terms by it

since they all contain 'sin' terms in either the right or left

side of the equal.signs and their coefficients are zero for

m = 0.

It is not immediately obvious that only cosine terms will

appear in the matrix elements marked "+" in matrix Z or that

only sine terms'will appear in the matrix elements marked "-".

This, however, is the case and can be seen only by careful

checking of each of the 64 terms with the aid of equation 1.30.

We may therefore now write the analog of equation 1.27 in

terms of its fourier components and matrix elements as

1.31 AA = SSk ri TTm d'
k= 1 ik ikj kj

where rik
j

-1

{i=1,2; j=3,4; k=1,2}
for {i;J;k.} =

{i=3,4; J=1,2; k=3,4}
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and rik = +1 for all other i,j,k. rijk follows from equation

1.30 when note is taken of the position of sin and cos terms in

the matrices. Then with this new definition of matrix multip-

lication we may write equation 1.31 as a matrix equation

1.32 1 = f SS T
o

where "*" stands for fourier component matrix multiplication

as defined in equation 1.31. If we define a new operator

"t:" by

1.33 SSm Tm = f SSm *m d
o

then we can rewrite ,the doubling equations 1.22 in terms of the

fourier matrices. Because of our choice of conventions in the

fourier analysis (see equation 26), the equations have exactly'

the same form with "°" replaced by ":" and single letters

replaced by double letters. We will write then again in their

new form, suppressing the double bar and "m" for convenience.

SS(2T) = SS + e T/P xZ1 e- T/P° + e
-
T/ : TT

1.34a

+ e-T/VO TT* : EZ1 + TT* : EEI : TT.

TT(2T) = TT(e-T/ U + e- 'T / P) + TT : TT

1.34b +e- 'T/1 eT//O + e-/ + /V e -/2 TT

+e - T
/O TT : ZZ2 + TT : ES2 : TT
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1.35a where SE1 = SS + SS : SS* : SS + . .

1.35b and Z2 = SS* : ZZ1 = SS* : SS + SS* : SS : SS* : SS...

Once again the associative rule can be shown to hold. Equations

1.34 and 1.35 are an exact analog of the intensity only equa-

tions derived by Hansen6 .

The symmetry relations for the fourier scattering and

transmission matrices can be written down immediately from

equations 1.19 and 1.21.

1.36a SS'(1',P) = X * SS'(Vp,')

1.36b TT'(u',p) = Y * TT'(p,p')

1.36c SS'*(],P')= Z * SS'(N,p')

1.36d TT'*(P,p')= Z * TT'(p,p')

Here again we use the prime to denote the matrices before

multiplication by Q, X means the transpose and the operator

sign * means the term by term multiplication by the sign of

the symmetry operators X, Y, Z.

The ZZ Matrices

The doubling equations are not quite complete. We must

show how to evaluate the infinite series involved in the def-

initions of EZZ and ZE2. Physically each term in EZ1 and ZZ2

represents the diffuse intensity of the radiation at each

bounce between the upper and lower layers. Intuitively we

expect the ratio of the components of two successive terms to

approach some limit independent of P and po. This turns out

to be the case.
=Ci =E=Ei i th

Let i = <I+l/ZZl> where EEZ is the i term in the ex-

pansion 1.35a. The division is performed for each matrix
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element at each p and jp. The average <> is performed for each

matrix element over p and po with equal weight given to each

(p,po). Thus C is a matrix of 16 scalar quantities, each in-

dependent of (i,po).

When it has been determined that Ci is indeed the limit of

successive ratios and hence independent of "i" we may write

1.37 rEE = EE1= -2 + ... + 1 

and ZE2 = SS* : E 1-

The division. l is performed for each of the 16 matrix elements.

i =
The determination C C while simple in concept is diffi-

cult computationally. The problem arises because the ratio

i+l i
Ei1 /E.1 does not approach a constant independent of p,po very

well, or quick enough in some cases. Sometimes, as in the case

of Rayleigh scattering the ratio is of two zero matrices. This

must be tested for and the ratio set equal to zero since divi-

sion by zero causes interrupts in the execution of the computer

program. Sometimes, however, for Rayleigh and Rayleigh-like

scattering, the divisor is-zero, while the dividend is not.

This arises because, in the case of Rayleigh scattering at

least, a finite number of points has been used to describe the

Stokes parameters defined at an infinite number of points. The

fourier terms that are computed for theoretically zero elements

are not always evaluatedto be exactly zero. This possibility

among many others must be tested for and the ratio set to zero

if the dividend is small enough. If the dividend is not small
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enough, the next term in the series is computed and the process

repeated.

For small optical depths a frequent problem arises. The

ratio is not only not constant, but changes sign with ALO. It

would be meaningless to compute an average in this case. Fortun-

ately after a few (usually one or two) terms, the terms E i 1 are

so small compared with E1I that they may be disregarded. Since

the IBM 360 is only accurate to 6 places in single precision I

have set this tolerance ratio to 10 . As the optical depth

increases this problem of sign change still exists but disappears

in all cases tested so far before the 4th or 5th term.

For larger optical depths, T~.5, another problem arises.

Some of the terms in the matrix Ci oscillate back or forth around

the limit, converging very slowly in the 3rd decimal place.

Again we are fortunate because the difference that the oscilla-

-6tion causes in EE1 can usually be brought below 10 with less

than 5 terms.

There is yet another problem which must be dealt with. The

ratio Ci approaches the limit rather quickly in most cases. How-

ever there are points in the ratio CEi+l/jEi which are either

much greater or much less than Ci. As "i" increases these dif-

ferences decrease. In the testing therefore we must make sure

that truncation of the series with the first few terms does not

impose a false value on ZE1 at a few points. This is done by

not allowing the series to terminate until the difference

caused by accepting the maximum and minimum values for the ratios

as Ci is less than 10-6. This is perhaps unnessarily strict but
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the amount of testing necessary to reduce the restriction and

improve confidence in less demanding tests is prohibitive on the

IBM 360/65 with the funds available. The testing subroutine can

sometimes take as much time as the computation of a term E-1o.

In the future it will be possible to have the computer "learn"

where to truncate the series from previous runs, thus saving

considerable computer time.

Before concluding this section it would be worthwhile to

mention some of the properties of the matrix-C. Not all the

properties of C has been investigated since that was not the

intention in getting the program working. But a few have been

noticed. For m=0 as T gets larger the 4 non zero terms 11,12,

21,22 approach the same limit. The other 4 non-zero terms 33,

34,43,44 appear not to do so and in fact each term approaches

its own limit. (The ratio for symmetrical terms like 34 and 43

are always identical). It is possible that these 4 terms do

approach the same limit as -T gets larger and "i" increases, but

if so it converges much more slowly than the first 4. In any

case we would not expect them to converge to the same limit as

the first 4 because for m=0, the sine terms are zero and.the

4X4 matrix equations become reduceable to two 2X2 independent

matrix equations.

For m + 0 the matrix C approaches a constant, that is, all

16 terms have the same ratio. This effect was noted as T gets

large:, but it is possible that in fact the approach to a con-

stant occurs for all T as "i" increases.
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One other effect may be noted in the matrix C. The

integrations neccessary in these computations have not yet been

discussed with reference to the computer, but it is obvious

that we must use a finite number of integration points. If we

have chosen too few points to correctly perform the integrations,

the problem will become most apparent in C for m = 0 when the

single scattering albedo is exactly 1. As T gets large C in-

creases. Too few integration points result in C becoming

greater than 1. At this point the computation ceases to have

any meaning, and the answers for a few doublings back can be

expected to be grossly inaccurate.- Even if we were to use an

infinite number of integration points we expect that as T + 

the answers become more and more inaccurate. This is due to

the loss of accuracy in the ratio 1/1-C as C approaches 1 with

only 6 significant figures.

The Numerical Integration Scheme

The doubling equations as written yield the scattering and

transmission matrices at any optical depth with complete accur-

acy. No approximations have been made in their derivation.

The loss of accuracy occurs in the algorithm for programming

the equations into a digital computer. Theoretically at least

we may choose the initial optical depth small enough so that no

loss of accuracy results in assuming only single scattering

exists-in the initial scattering and transmission matrices.

The integration scheme we have chosen is the method of

Gaussian quadrature. Consider the integral
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I = f F(x)dx.

This may be approximated by

N
I . F(x

i)
a

i=l

where ai is a suitably. chosen weight at xi. If ai is chosen as

(xi+
1
- xi 1 )/2, that is, the distance between the midpoints of

the intervals on.either side of xi, the effect is to evaluate

the integral by computing the area under the trapozoids formed

by joining the points with straight lines. The choice of x
i
is

arbitrary in this case.

Gaussian quadrature is much more sophisticated than this,

in that the points are chosen a priori given the number of

points, but basically the weights ai may still be thought-of as

an.interval around xi.

There is no need to derive the properties of Gaussian

integration as many books have sections on it (see, for example,

R.T., p. 61). It is sufficient to note that it is an extremely

powerful method capable of evaluating exactly the integral of

any polynomial of order r = 2n - 1 with only n points and their

respective weights.- It is still suprisingly accurate if

r > 2n - 1. Unless otherwise mentioned, Gaussian quadrature

.will be used in evaluating all future integrals that occur. If

the integration interval is other than (0,1), say (a,b) then we

must choose the points yi and the weights bi according to the

scaling laws
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1.38 Yi = a + (b-a)xi

bi = (b-a) a.

where x
i

and a
i

are the points and the weights on the interval·

(0,1).



V Elimination of Unnecessary Computations Through the Use

of Symmetry Relations.

As we have seen previously, we may express some of the com-

ponents of the scattering and transmission matrices in terms of

other components of the same matrices. Changing our point of

view from analytic to digital means that there exists some

redundancy in the information content of the multidimensional

arrays that are the digital analog of the scattering and trans-

mission matrices. While there is no convenient way to reduce

the space these arrays require in the computer, we can reduce

the computations necessary to fill the space.,

Equations 1.36 are the.basis of this reduction. We need

only assume one other fact in order to proceed. The symmetry

properties were derived from the single scattering matrices.

It is by no means obvious that these properties will continue

to hold for large optical thickness. This however is true and

we shall assume it implicitly henceforth. It was checked num-

erically in test runs of the program and served as a continu-

ous check of conceptual mistakes in the creation of the

computer program.

From equations 1.36 we have, in component form,

SS'ij (', =:X SS',ij ij ji( '

1.39

SS*'ij('= ZijSSij(~,'')

TT* ij (' W') = Z ijTT*' ( ')~~~i j ' J '

47
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From this we see that SS and TT need only be calculated for

little more than half the matrix before all the information is

computed. However that is not the whole story.

Each term in the doubling equations is, of course, computed

separately. It is natural to assume that each term in the equa-

tions has the same symmetry as the term on the left hand side of

the equals sign. This is not the case.

A posteriori this is obvious. Such is the wonders of hind-

sight. Consider the terms of the form e- T
/ -EZ1 : TT and

e T/1O TT* : EZ1 in the SS equation. The remarks here apply

equally to similar terms in the TT equation. These are the

only terms in the equation which do not share the symmetrical

form of the other terms. In examining the computer representa-

tion of these terms it was found that instead of each term being

symmetrical with respect to itself, it was the sum of the terms

that had this property. Moreover each term appeared to be

expressible in terms of the other. We will now derive this

property.

Consider the term ZZ1 : TT. It is logical to assume that

ZZI has the same symmetry as the term on the left hand side --

that of SS. This will not-be proved, but the assertion has

been checked numerically. The statement that ZE2 has the same

symmetry as TT is true also and has been checked as well.

The term ZE1 : TT may be written in component form as

(ZZ1 : TT)ij (p,vo) =

k(Qi jk k ik(')rikQkTTkj( o)
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where we have noted that-the matrix Q may be written slightly

ambiguously as Qi. We could write it as a full matrix, Qi Jil,

but this would necessitate expressing another full matrix multi-

plication in the equation. If we let Qil = Qi we must make sure

that Q performs its intended function -- multiplication of the

3r d and 4t h rows by 2. The appearance of Q in the equations

occurs when we go from unprimed to primed terms.

j Qfo k ( ki( )Xki'riJQkYkjQ TT' Q(po ') d'kk . I '

Q f ok TT(o, )Yk kj krikj QkXki Zki(' ,.)) . i

Now YkjZkj = Xkj since multiplication of these symmetry matrices

is component-by component. Then we have XkjXki or X kXkj.

A quick check by matrix multiplication shows that in fact

XikXkj = Xij independent of k, summation over k not-implied.

The right hand side of the equation may now be written

= Xij f (TT*jk(lo,,) rikj ki(W') d-'

= Xij (TT* : Z)j (PoI)

In matrix form we have proved

1.40 ZE1 : TT (P,PO) = X*TT* : 1 ('b,l ) 

In a similar manner we may show that

1.41 CZ2 : TT (P,Po) = Y*TT* : EE2 (o,).
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Thus we need only compute one of these sets of terms in

full before the other becomes known.

The proof that the symmetry properties of SS and TT for

single scattering continues to hold true for multiple scattering

can be done with considerations such as those above. Each of the

terms (or pairs of terms as noted above) in the doubling equa-

tions must be examined to show that they have the same symmetry

properties as the matrix on the left hand side. Then if the

optical depth of the initial layer is taken to be small enough

so that single scattering prevails to any degree of accuracy,

we may show by induction that the single scattering symmetry

properties hold true for any optical depth and hence for multiple

scattering.



VI A Collage of Time Saving Devices

The doubling equations which we have derived still need

much discussion if we are to use them intelligently. There is

still much we can do to reduce the time required.to execute the

computer program. The interplay between time and accuracy is

the game we shall play. In this section we shall develop a

method to significantly reduce computation time with no sacri-

fice in accuracy through the removal of singlescattering from

the computations. We shall discuss the effects of the number

of fourier coefficients used, the number of Gauss points and the

number of 4 points used in the fourier analysis. We shall also

discuss the effect of making the initial and final optical

depth a function of the number, m, of each. fourier coefficient.

We will find it useful to define a generalized single scattering

albedo 0om which will help us gaugethe importance of any fourier

component in the final answer.

Generalized Single Scattering Albedo

The single scattering albedo as generally defined is Just a

measure of the ratio of.the energy scattered to the energy inci-

dent inany scattering event. In terms of our notation it is

1.42 2 pl(0) + P2(0)
1.42 = ( 2 ) sin edeOd.

If we express io as an integral in W,.O',4 space of the fourier

analyzed phasematrix we find that only the 1st fourier matrix

gives a non-zero contribution.
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We have shown how to get SS- and TT . If we let SS and

TT m stand for the matrices unadjusted by the coefficients that

converted them from a phase matrix to scattering and transmission

matrices (see equation 1.18) then the set {SS-, TT-} representsu m

the fourier analysed phase matrix. SSm and TTm represent re-u u

spectively light scattered in the backward and forward hemis-

pheres. In terms of the phase matrix R of equation 1.14,

Wo() : A f R(-,T' f'-$) dpd$'
o -- 1

Here, and similarly in what follows, unbarred terms like R mean

(Rll + R12 + R21 +R22)/2, a representation of the scattered

intensity for unpolarized light incident.

2, 1 2 1
W0 (p) = i o {Su(I ' ,'- $) + TU(i',i'-c)} d$ 'd

'
l

where the u stands for unadjusted by the coefficients of equa-

tion 1.18. Now writing S
u

and Tu in terms of their fourier

coefficients according to the formula of equation 1.26, and

noting that f cos mgdq = 0, m $ 0
0

1.43 W(i) = S {SS°u(p,pt) + TT° (p,i')} d>'.

We have written wo0 () although theoretically we would

expect wo0 () = wo, a constant. But what we have in practice

is a measure of the accuracy of the fourier analysis, and the

gaussian integration. If we have chosen too few $ points to

accurately describe the phase matrix or if we are using insuf-

ficient gauss points in the integration, the defficiency shows
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up most markedly in Wo(p). Experience has shown that a very

good feel for the accuracy of the doubling computations can be

gotten from the degree to which (o(p) departs from Wo. Unhap-

pily Wo(i) depends upon 2 parameters and there is no easy way

to separate their effects other than vary each one separately.

In practice both were varied together according to intuition

based on limited experience.

Equation 1.43 leads immediately to the generalization for

m + 0.

1.44 m() = I (, + TTm (, } d

The absolute value signs grew out of the fact that the.

second fourier coefficient for rayleigh scattering (m=l) gives

0
1

o(v) = 0, although each term by itself produces a non-zero

integral. Oddly enough the answers are the same with or without

the absolute value signs for all non-rayleigh scattering laws

tested.

Clearly wo(p) does not have the same physical meaning as

the m = 0 term. For m + 0 we find that it is not a constant

but a function of p (as advertised). Just the same, however,

it can serve as a guide to guessing three other accuracy par-

ameters -- specifically M, the number of fourier terms needed,

m m
T., the initial optical depth for each m, and TF the optical

depth at which the results for a semi-infinite atmosphere are

reached.

It is found that <w0(v)>, an eyeball.average over a, de-

creases with increasing m. There are exceptions to this rule,

c a
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but the deviation from monotonic is usually small. Since the

doubling equations for each m takes no note of the value of m

we expect that statements made about the effect of wo on the

importance of various orders of scattering carry over to some

degree for <wo(p)>.

Since 8 of the 16 terms are zero for m = 0, there is in

fact a difference. However the doubling equations written for

intensity only contain only cosine terms, none of which are zero

for m = 0, and thus the above statement appears to be more ac-

curate when applied to intensity only. Much of the polarization

is due to simple scattering and this, as we shall see, is dealt

with in a manner that makes M effectively infinite for single

scattering. Then any decision we make on the basis of

%lm m
<X0(p)> in our choice of M, T m , and TF will not affect the

polarization any more than it does the intensity.

As we have noted ~<om()> decreases as m increases. This

means that the importance of secondary and higher order scat-

tering diminishes with respect to single scattering. We may

therefore expect that increasing the initial optical depth,

Ti, as m increases will increase the speed of the solution with

little sacrifice to accuracy. Eventually for each optical

depth, T, of interest an m = M - 1 is reached beyond which

Ti m T. Then we only need compute M fourier terms if we account

for the single scattering due to terms m > M. We do this by a

method due to Hansen and Pollack7 for doubling equations in the

intensity only case.
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m-1. Co
1.45 S(T; J, 1;$'-f) = Z S'(T;p,1)-TS>. (T;IPt) m(c'-c)

+ S(T;,;-) ,

where Ss is the scattering matrix due to single scattering at

optical depth T, and {SSs } are the M fourier components of Ss .

Equation 1.45 permits a reduction in computer time by as much

as a factor of 4.

The decrease of <wo(0 )> with m permits additional time to

be saved for calculations to large optical depths. The approach

to a semi-infinite atmosphere is achieved at T-= 8 for all m > 0.

Terms with ,pv'+0 approach this limit at lower optical depths

than terms with ,U'+i. Radiation entering or leaving the

scattering layer near normal incidence is much more likely to

feel the effect of deeper particles then radiation at grazing

angles which is affected more by single scattering in the

upper layers.

Not all of the values in fourier scattering arrays contri-

bute significantly to the integrations in the doubling equations.

In the case of "intensity only" equations we find that as m

increases terms with ,i'+-O are much larger than p,p'-l. Thus

we may decrease the number of gauss points actually used in the

integration, Km, until as m - M only the terms with U,1' O0

are used. With the addition of polarization the situation is

more complicated, although the same time saving method is valid.

For m = 0 we have in fact (1,l'+l)>>(1,p'10) for all 16 terms.

As m becomes large this trend reverses itself to become
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(~,'+1)<<(l,l'+0) for all 16 terms. The complication arises

because each of the 16 terms does not reach this limit in the

same way or at the same rate. Polarization calculations, it

appears, require more care in the selection of Km then do

intensity calculations.
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Part II

THEORETICAL CALCULATIONS OF DISK INTEGRATED AND DISK

RESOLVED POLARIZATION OF PLANETARY ATMOSPHERES

Abstract

The theory developed in Part I is used to calculate the disk

resolved polarization of model atmospheres as a function of

phase angle. The theory of the integration of the Stokes

parameters over the illuminated disk of the planet is pre-

sented. The polarization as a function of position on the

disk is shown superimposed on the planetary disk drawn for

various phase angles for three different types of phase

matrices, including the Rayleigh phase matrix and one that

matches the phase variation of Venus at 1 micron wavelength.

Comparison of the disk revolved Venus observations with

calculations is good. Disk integrated results are given

as well. The effect of-the single scattering albedo of the

scatterers is investigated. The polarization observations

of Venus and Jupiter are discussed in the light of general

principles that have been inferred from examination of the

results of the model calculations. Disk resolved polariza-

tion observations may be an unharvested field of useful

information.
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I INTRODUCTION

Most of what we-have learned about the planets has

been learned from the light they reflect. By far most of

the efforts to understand- the planets to date have concen-

trated on some aspect of the reflected intensities. The

polarization of the light has gone by comparatively unexplor-

ed by observer and-theorist alike. This gap in our knowledge

was caused by a singular inability to interpret the observa-

tions. We attempt to further develop this capability in the

present paper.

Polarization in planetary atmospheres is a difficult

subject to treat. Only recently, with the availability of

high speed electronic computers has it been possible to at-

tempt polarization calculations at all. The inclusion of

polarization in radiative transfer computations requires

an increase in computer time of a factor of 27 to 6l4 de-

pending.-on the algorithm chosen.

The computational expense-of these calculations has

been a major factor in determining-the content of the work

that follows. It was not possible-to do extensive model

calculations, both because- of the many computer runs nec-

essary and the lack of an interactive capability caused

by the physical distance between the programmer and the

computer. The program was designed but never run on an
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I.B.M. 360/65 at Cornell University and run on an I.B.M.

360/91 at the Goddard Space Flight Center in Maryland.

We shall explore the radiative transfer calculations

from the input stage of a single scattering phase function

to the output stage which describes the disk integrated

and localized disk polarizations. Extensive use is made

of the theory and associated computer program developed in

Part I of this thesis. The computations are made for semi-

infinite atmospheres with the single scattering albedo as

a parameter. In addition to the planetary phase angle

dependence of the polarization of the entire planet, we give

many diagrams of the polarization across the planetary disk.

Both the total polarization and the polarization of light

scattered more than once will be explored.

We investigate three-different-types of phase functions

including the Rayleigh phase function and one that matches

the phase variation of Venus at 1 micron wavelength. The

discussion of the three cases is intended to be instructive

rather than exhaustive. The behavior of the polarization

is discussed in detail so that a good a priori knowledge

can be derived for planetary polarization from the single

scattering information alone. Many observational effects

that at first sight appear strange will be seen to be rather

easily understood. The work here should help to provide
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a basis-for future model calculations.and the interpretation

of future observations, including the- Grand Tour-observations

of the outer planets.

The next two sections describe the computational pro-

cedure; section IV gives the results for the-three cases

studied; and section V discusses some-of the observations

*in light of what was learnedin- section IV.



II POLARIZATIONWAS A FUNCTION OF.POSITION ON A
PLANETARY DISK--THEORY

It is usual to discuss the results of radiative trans-

fer calculations for plane.parallel.layers in terms of three

parameters, 0, 0', and AC.where 0 and 0' are, respectively,

the angles of emergence and incidence and A4 is an azmuthal

coordinate. These are the variables of the scattering matrix

function S(0,0',4'-C) that was.derived in Part I of this

thesis. Typically one coordinate is held constant and re-

sults are given in the other two coordinates. The figures

thus produced are rarely capable of being immediately inter-

pretated in a planetocentric coordinate system. With the

addition. of polarization and its.intimate dependence on the

azmuthal coordinate, the usefulness of such figures is re-

duced, for most astronomical purposes. Tables of values

such as those of Coulson et al..(1960) for a finite Ray-

leigh atmosphere require extensive.interpolation in one,

two, or three dimensions.. to. describe the state of polar-

ization of.light reflected--from a given spot on the disk

for a given planetary phase angle.

In.this section, therefore, we will show how to des-

cribe the intensity and polarization of light reflected

from a planetary disk as a function of phase angle and

position on the disk. By. doing this we can gain additional
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physical insight into.the effects of multiple scattering,

since the phase angle of a planet is just 1800 minus the

scattering angle for single scattering, 0. Thus every

point.on.the disk scatters the-light.to the-observer through

the same angle and the.. polarization.due the-single> scattering

alone is everywhere the same-across the disk.

Before discussing the planetary geometry, let us review

the use and meaning of-the Stokes intensity I(G,G',$'-).

As defined in Part I of this thesis 0 and 0' are angles of

emergence and incidence repectively, measured from the local

normal. The local normal and the direction of propagation

define the meridian planes of emergence and incidence,

respectively. The azimuth is measured from an arbitrary

direction and. is positive in a counterclockwise direction,

when seen. from above. (In the convention of Part I, azimuth

is measured from the direction where the radiation appears

to have entered the scattering event. This- introduces a

factor of 7 radians in figure 1.4. The convention is the

same below.) The azimuth of the observer and source are

~-w and P' respectively. Thus propagation back to the

observer corresponds to c'-$ = -. and 4'-$is negative over

the upper disk of the planet shown in-figure 2.1,.discussed

below. (The minus sign-here corresponds.directly to the

adventitious-decision-to display the planetary disk as a
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function of negativephase angles, i.e., the--earth-planet-

sun angles.of:-Venus before inferior conjunction.)

Figure 1.4 of Part I develops the-scattering event in

a non-planetary geometry. The direction in the plane trans-

verse to the direction of propagation-in which the intensity

is maximum is called:the direction (or plane) of polariza-

tion. It is an angle X.measured'-in a clockwise direction

from a vector, +1' in the transverse-plane that is parallel

to.the meridian plane of emergence,:.propagation towards the

observer. See figure 1.1 of Part I for a simple:picture..

The angle is given by

2.1 tan 2X = U/Q

where U and Q are components of-the-Stokes-intensity vector

I[I,Q,U,V], and

2.2 Q = I I

where 1 and r refer, re-spectively,..to directions parallel

and perpendicular to the meridian plane.

The previous discussion while conceived of in terms

of figure 1.4 should now be reread when considering figure

2.1 which give a picture of the geometry of scattering

from a planetary atmosphere seen-at a phase angle V = 7r-O ,

where 0 is the scattering-angle of the single scattering

phase function. The subsun point is at S, the subearth

point at E and the scattering takes place.at-P. Vectors
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+1 = n and Or are parallel and perpendicular to the plane

of emergence and lie in the transverse-plane. The angles

9, 6' and $'-S+w are clearly indicated. Angle e at E can

be considered a planetary azimuth coordinate since when

viewed along EO all great circles beginning at E appear

as radial lines. Vector +1, parallel to the plane of

emergence, is therefore radial as viewed by the observer.

Thus angle X, the-polarization direction, is measured from

the radial direction as seen by the observer.

The geometry of angle X once again points up the

difficulty of obtaining a physical insight from graphs of

X versus 0,9', or AS. For example, if the polarization is

everywhere normal to the scattering-plane EOS, X varies

across the disk, even though the quantity x-e-is-a constant.

It was decided therefore to display the computer results

as a function of e and 6. The printed output gave the

quantities:x and x-e as a function of e and.6. When the

polarization is radial X = 0; when it is tangential to the

limb X = +±/2. On the other hand when x-e = 0 the polar-

ization is normal to the scattering plane; when x-e = +±/2

it is parallel.

Positive (or negative) polarization is a term that

suffers from some ambiguity. It is usually meant to ex-

press the fact that the electric vector normal (or par-

allel) to the scattering plane is greater than the par-
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allel (or normal) vector. It is a term that-is-unambigu-

ous in the context of single scattering, for then no planes

are defined besides the scattering plane. In the context

of a planetary atmosphere, however, the meaning of the term

is confused'by the presence of the plane of emergence with

respect to whose direction the polarization is measured. We

then may mean radial whenwe say positive or tangential

when we say negative. To avoid confusion we will henceforth

qualify "positive" or "negative" with "radial" or "tangen-

tial" whenever necessary.

Also note that for single scattering the polariza-

tion across the disk can be only positive or negative,

whereas for multiple scattering it can be positive, nega-

tive, radial positive, tangential negative or anything in

between, although these cases are by far most often encount-

ered observationally and theoretically. On the other hand

the polarization integrated over a uniform sphere must again

be either positive or negative because then only the earth-

planet-sun plane is defined.

It remains now to detail the:equations for the degree

of polarization, P, and the direction of polarization X.

The degree of polarization at (e,O) is a mathematically

positive quantity and is given by

2.3 P - (Q2 + U2 + V 2 )1
2.3 P
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I, Q, U, V are the four components of the Stokes vector.

The degree of linear polarization, PL' is what we usually

measure however.

(Q2 + U 2 )1
2.4 L I

PL = P for the cases that we have calculated, the degree

of circular polarization, PC, usually being small.

2.5 PC ' I

The polarization direction for linear polarization is giv-

en by equation 2.1.

Before ending this section it is necessary for com-

pleteness to describe the transformation (O,e',AS)+(e,O,)).

We also discuss the interpolation necessary to derive

T(e,e,Y) from T(e,e',AS), the output of the computer pro-

gram.

Spherical geometry gives

cosT = cose cose' + sine sine' cos($'-S+w)

2.6 = cose cose' - sine sine' cos(AS)

AX = $' - S

Also,

2.7 cos(e) = cose' - cose cosy
sine sin'
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A set of (,6e',Ae) points is then related to a set of

(e,e,T) points. Thus I(e,,'Y) is known, but not necessar-

ily at the e ,Yo points desired. We must therefore inter-

polate in 2 dimensions in e,T space to obtain the results

at e -, o. We now discuss such a scheme.

We are handicapped by the fact that e,T space is

not uniformly filled with known points. This has two con-

sequences. First, none of the conventional interpolation

schemes will work. Second, large errors are introduced at

place where the data is sparce.

The interpolation scheme we employ here is a modi-

fied Lagrangian interpolation. The method produces a func-

tion of two variable that is restricted such that it passes

through the 9 points nearest to the required point. The

formula is

3 3 3 (eo-e ) 3 ( o-T )
f(eo,'o) = f(e.,j.)x H n x

i= l j=l Jn i (ee Mj (a n . m

Equation 2.8 produces quite reliable results. It

appears that 32 is the optimum number of points for a good

fit, because more points introduce uncontrolled spurious os-

cillations of the fitting function. The results from equ-

ation 2.8 degrade considerably when either or both required

points are outside the known grid of points. This occurs

at the limb of-the planet and at large phaseangles.



III POLARIZATION AND INTENSITY INTEGRATED OVER THE DISK

OF A PLANET-THEORY

The theory of the integrated diffuse intensity of

a planetary disk is well known. The addition of polariza-

tion considerations complicates matters by requiring a ro-

tation of the coordinate system at each point on the disk

before the standard equations may be applied. We shall

discuss below the integration of the Stokes quantities ov-

er the disk, as well as the algorithm used to produce the

computer code.

To perform an integration over the disk we must

first rotate the coordinate system in which the Stokes

vector is defined into one that is independent of the pos-

ition on the disk.- Let this new coordinate system be the

directions in the transverse plane of figure 2.1 that are

parallel and perpendicular to the scattering plane EOS.

The axes of observation must then be rotated by w/2-e=P in

a counterclockwise direction. The effect of rotation of

the coordinate axes is to subject Ip, the Stokes vector in

the coordinate system defined at P, to the transformation

I 1 0 0 O I

2Q 0 -cos2e -sin2e 0 Qp

2.9 0 sin2e -cos2e 0 U
p

V 0 0 0 V
p
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Only integration over the upper half of the disk is

required if we include the result that integration over both

halves yields U = V = 0. Every point Pu on the upper half

has a mirror point P1 on the lower half with e and 0' the

same, but with a difference in sign in the angles e and

The Stokes parameters I and Q are even functions of A~ but

U and V are odd. (See Part I of the thesis). The result

of adding the Stokes intensity at Pu and P1 is, in the new

coordinate system,

I 1 0 0 0 I

Q 0 -cos2e -sin2e 0 IQ
2.10 = 2 

U 0 0 0 0

V O O O o0 0

Note that we would only expect to observe circular polariz-

ation, the V term, if the observations were to be made over

half the disk.

The rest of the treatment of the disk integration

can now proceed along well traveled paths. The only refine-

ment is that we write I
i

in place of I in the standard equa-

tions, where I1 = I and 12 = Q. Below we shall briefly dis-

cuss the Bond albedo, AB, the geometric albedo, p, the phase

integral, q, and the phase variation of intensity, p(T).

The Bond albedo is the measure of the total energy

reflected from the planet and equals the ratio of the total
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energy reflected by the planet to the total energy incident.

The derivation of AB will not be pursued here since many

sources are available for a complete discussion (most re-

cently, Kattawar and Adams, 1971). It is

2.11 AB = pi(O)q

where

2.12 pi(g) = 1 r(cos' + 1)f (l-_2)½dS Iid(,1)d
0 -!

where B = cosn

and i = 2sin + (cosY-l)
(cosY+l) (cosY+l)

and n and C are related to 0 and 0' by the equations

cos8' = sinn cos(C-Y)

cosO = sinn cosC

The phase integral used in equation 2.11 above is defined as

2.13 q = 2{ sin? dO.
pl1(O)

The angles C, n, and T are defined in figure 2.1.

The degree of polarization at any phase angle ', is

then
p2(yI)

2.14 P
pl(T)

Note that since U = 0 the direction of polarization can be
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only perpendicularor parallel to the scattering plane, cor-

respondingt whether PL is positive or negative respectively.

This is the same property displayed by single scattering

from a sphere, and indeed, the planet may be regarded as

a very large uniform sphere in no way different in scatter-

ing geometry from the particles of which it is composed.

The algorithm developed to evaluate equation 2.12 was,

it turns out, not-optimally conceived. The accuracy of the

results is not as high as would be expected considering the

number of integration points used. The accuracy will be

discussed at the beginning of section IV. The failure to

iterate on the integration scheme was the result of the

physical distance between the computer used to develop the

program and the computer used to test and run it. Accuracy

tests were not possible at Cornell.

The integration in (,5) space was performed using

only those points on the disk that corresponded to the

Gaussian points in the variable, at which the functions

were known. This left p' and AS free to follow the path

of integration. Two dimensional interpolation in these

variables was necessary at every integration point. The

integration was performed in two steps. First the inte-

gral was evaluated over g--i.e., over angle n in figure

2.1. Parabolic sections were fitted to the points along

NPL ( the line of longitude through P ), and the integra-
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tion performed analytically. The integration over i was

done similarly. Only those i values were used that corres-

ponded to cosC = P, where P is a Gaussian point, thus insur-

ing that the integration over B included a point on the equ-

ator.

This scheme was deemed preferable to a three dimen-

sional interpolation which would be necessary to find the

values of the function at points dictated by a sophisti-

cated quadrature scheme. Kattawar and Adams (1971), for

example, use Chebyshev polynomials of the second kind over

i and Legendre-Gauss quadrature over 8. They do not indi-

cate, however, how they evaluate the functions at these

points. It is possible that the integration scheme des-

cribed here can be improved, but it is adequate for many

planetary atmosphere problems.

The integration over the disk was checked using a

code that does not require interpolation and gives AB and

p = pi(0) very exactly via Gaussian quadrature. Thus q is

accurately known and the integral of pi(T) in equation 2.13

may be checked against a more exact value.

After the definition of p given by Russell (1916),

p is the ratio of the observed brightness of the planet at

full phase to that of a flat disk of the same size illumin-

ated andviewed normally and reflecting all the incident
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light by Lambert's law. Thus

2.15 p = _
7rr2F

2.16 I( = S()F
41

and hence

2.17 p = oJ S(p)dp

(This is a factor of 4 smaller than the radar cross section

of a planet with the same scattering function.) The inte-

gral in equation 2.17 can be formed accurately since the

points required for the Gaussian quadrature are just those

points at which the function was calculated.

The Bond albedo is the integral over all positions

on the disk of the energy flux reflected into all directions

from each point, divided by the incident energy. Thus

2Tr 2 1 2 T r1

2.18 A = o dsfo r2 di' Jo d o I(I,',,)>pdp
AB r2wFB Trrr2 TrF

From equation 1.26 we have

N
2.19 I =~S p = ·-(m)

m=O 

Only the m = 0 term survives the integration over $.
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Equation 2.18 reduces to

2.20 AB = 2f ;f SS°(p,p')dpdp'

This again is accurately computable by Gaussian quadrature.



IV REGIONAL AND DISK INTEGRATED POLARIZATION-RESULTS

This section represents a set of tentative steps

leading to a fuller understanding of polarization in plan-

etary atmospheres. Until now, no theoretical work has

shown the distribution of polarization over a planetary disk,

and the appearance of the disk in polarized light was virtu-

ally unknown. Those measurements that have been made have

had no theoretical framework with which to compare, and thus

a wealth of information goes uninterpreted, unsifted for pos-

sible information content. It is hoped that the discussion

here will help to provide a basis for understanding some of

the more general polarization effects displayed by a planet-

ary atmosphere.

Unfortunately, it was not possible to make a comprehen-

sive survey of the effects of different phase functions. The

polarization program requires about 4 minutes for the Rayleigh

phase function and up to 15 minutes ;or more for the forward

scattering phase functions studied. The computations were

performed on an I.B.M. 360/91 (a very fast machine). Compu-

ter time allotments limited the number of times the program

couldbe run and the physical distance between the programmer

and the computer limited the number of iterations. Thus the

sample of phase.functions studied is not comprehensive. It

is hoped that it is representative.
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We have chosen to display below both disk integrated

and disk resolved results for three phase matrices, selected

from a larger set of similar phase matrices with differring

0o's. In each of the following three subsections we give

these comprehensive results as well as displaying the varia-

tion of the disk integrated quantities with wo. Both the

total light scattered, designated by "T", and the multiply

light with single scattering removed, "M", will be investi-

gated.

The three phase matrices A, B, and C will be discussed

thoroughly in their respective subsections. Briefly, Case A

corresponds to Rayleigh scattering; Case B to a forward scat-

tering phase function the polarization curve of which exhi-

bits two neutral points between 0° and 1800; and Case C to

a forward scattering negatively polarized phase function

which matches the disk integrated polarization of Venus at

1. micron wavelength.

A complete table of A, p, q, q/p(500) (Russell's rule)

for all the calculated cases as a function of wO is given in

the Appendix.

1. Accuracy

Rayleigh scattering for T = 1 was compared with the

tables of Coulson et al.(1960) with agreement to four places.

The doubling program was also checked by comparing the results
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for an arbitrary phase function with the results obtained

by Hansen (private communication) for the same phase function.

There again the agreement was to better than 4 places, al-

though Hansen's computer program was derived independently

using the doubling method originally suggested by Van de

Hulst (1963). At the Gaussian points we expect an accur-

acy of ±0.01% in the percent polarization. Interpolation

over the disk gives an accuracy of .1.05 for polarization

greater than 0.05%. This was estimated by noting that the

interpolated single scattering polarization should be con-

stant over the disk. Integration over the disk is accurate

to .1.01 or ±0.2%, whichever is higher, for 0<Y<140°, and
X
.1.2 or ±1.0% for 1400°<<1600. Beyond 1600, we do not ac-

cept the integrated results at all. Disk integrated accur-

acy was estimated by internal checking and by comparison with

the table of Kattawar and Adams (1971) for disk integrated

Rayleigh scattering for T = 10 $ A. All error estimates are

approximate since they-depend on the phase function being

studied as well. as the phase angle and position on the disk.

Rayleigh scattering with wo = 1 gave a Bond Albedo of

0.99 not 1.0 as would be expected. This is the product of

using sngle precision arithmetic with only six significant

figures and the loss of accuracy associated with dividing by

the difference of two numbers quite close to unity when wo=l.
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Figure 2.2 shows the phase variation of Venus at 1t

as calculated by Hansen (1971) and myself. Input paramet-

ers to the Mie program were supplied by Hansen, and ~O was

chosen to match the Bond albedo of the planet following

Hansen's method. The comparison, however, can only be con-

sidered approximate, for Hansen later modified his best fit

parameters in the published graphs. Figure 2.2 lends great-

er confidence to the results below. The solid line is Han-

sen's results, the circles have been calculated here and

the data points give the observations of Coeffen and Gehrels

(1969).

2. Results

A The Rayleigh Phase Matrix

Rayleigh scattering is the most thoroughly worked area

of radiative transfer theory, with the exception of isotropic

scattering. It holds this distinction both because it has

the simplist realistic phase function (requiring only 3 Four-

ier components and 6 Gaussian quadrature points for compar-

ison with Coulson et al.'s(1960) tables) and because it is

the case to which the phase function of any scatterer returns

as the wavelength is increased. It is also important at

short wavelengths for the upper molecular layers of many

planetary atmospheres attain appreciable optical depths in

the ultraviolet.
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Figure 2.2 The disk integrated polarization of Venus at 0.99 u as observed

by Coffeen and Gehrels (1969a), as calculated by Hansen (1971) and as
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Treatments of Rayleigh scattering range from the analy-

tical discussion by Chandrasekhar (1960) to a set of tables

for the three non-zero Stokes parameters published by Coulson

et al. (1960). Faster computers capable of handling more com-

plex scattering functions have led to a decreased interest

in Rayleigh scattering, and yet the ease of data handling

that these computers provide has increased interest in disk

integrated Rayleigh. calculations. Hansen (1971) published

graphs of disk integrated polarizations as a function of opt-

ical depth. In a more extended treatment Kattawar and Adams

(1971) have published tables of disk integrated polarizations

and intensities as a function of optical depth and ground

albedo.

To the body of knowledge-on Rayleigh scattering we add

below the polarizations across the disk of a semi-infinite Ray-

leigh atmosphere. Results at selected phase angles and non-

unity single scattering albedos are-also included.. Concur-

rent with the multiple scattering figures is a set of figures

with the single scattering removed, included to dispell the

convenient but incorrect idea that light scattered more than

once is unpolarized, as well as to better understand the ef-

fects seen in the total light.

The figures showing the Rayleigh. planetary disk are

given at the end of this subsection. Figures 2.4 - 2.13
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show the percent polarization and direction of polarization

for a single scattering aibedo, -I, equal to 1 for phase angles

from 10 to 1600. The upper figures give polarization of the

total light, T, scattered from each. point-whereas the lower

figures give the polarization of the light, M, that has been

scattered more than once.

Figure 2.14 - 2..19 show the influence-of oo. The up-

per and lower figures correspond to wo = 1.0 and o 0.9,

respectively, for T light.. Figure 2.20 gives the T polariza-

tion for wo = 0.99 at. the largest phase-angle run, 170b.

A word about the graphical representation. The polar-

ization at a given point Q is given by the length of the arrow

that begins at Q. -.Q is indicated.by a small + sign. The end

of the arrow has a small arrowhead.which begins after the

length corresponding to the.polarizati.on. .At small phase

angles where the polarization is small near the center of the

disk, a portion of the physical disk has been removed and re-

placed by an insert with_ an..expanded scale. The scale of the

percent polarization changes with.phase angle, but an attempt

has been made to keep the-scale relatively constant for a

range of phase angles. The points at which data is present-

ed changes with phase angle.-- This accounts for anomolies

that are sometimes seen when a point wanders too close to the

limb or:pole. The point's.were chosen. according.to the follow-

ing scheme: .For a given value of..e.(corresponding to a Gauss-
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ian point) values are given a 7 equally spaced points in the

angle e over the interval between e = 0 and the value of e

where the circle of constant 0 intersects the terminator or

equator. If the circle of constant e intersects the termina-

tor, the interval in e-is reduced somewhat so that no point

falls on the terminator. The above scheme accounts for the

migration of data points in the direction of the sun's motion

as the phase angle V changes. Another slight modification

may be noticed. For small phase angles-and.radial polari-

zation angle e was shifted by a maximum of 5° , the shift in-

creasing as e increases. This increase the visibility of the

arrows somewhat.

The scales of the drawings were chosen for rapid

comprehension rather than maximum.data content. Each draw-

ing is accompanied by a scale whose physical length does not

change in any of the figures. The value next to the scale

indicates the percent-polarization corresponding to the

scale length. The center of the disk is drawn to an ex-

panded scale for many figures at small phase angles.

The drawings were produced on a Calcomp Plotter from

data punched by hand on cards. The plotter can only draw. lines

in one of eight directions so that.lines.at other angles must

be drawn as combinations of small sections of lines in the quant-

ized directions. This produces breaks in the lines which de-
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grades the accuracy somewhat while- at the same time providing

a visual guide to the-departure of an arrow from true vertical

or true horizontal.

The polarization:for T and M has-been normalized to

the value-of the respective intensity due to T or M. This

has the advantage of showing the polarization-caused by sec-

ondary scattering alone, but has the disadvantage that-the two

figures for T and M at a given phase angle-are not additive

without the addition of a multiplicative factor at each point.

Normalization to the-same-intensity would be preferable, but

this iteration was-not performed.

Let us describe--the gene-ral behavior of--the T polari-

zation as V increases. Subsequently we--will discuss and explain

the-points raised here, as well-as -the behavior of the M pol-

arization. .The figures for T and M are--drawn- to-the same scale

in all cases. It will be helpful to-the-reader to glance through

the figures now and during the discussion,

Starting with figure 2°.4 for T = 1° we-see that the

polarization is everywhere radial;-and definitely non-zero,

contrary to the expectations of some-. It is only as a result

of the disk integration.that-the-polarization approaches zero

at zero phase. -The percentage. increases- radially outwards,

reaching a maximum of- about 8%' at a:radia-l- distance of 0O97

and then decreases to- zero at the-limbs. The-M- polarization

is. also radial:but increases-monotonically at thelimb is ap-
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proached, achieving an average maximum of 30%.. As the phase

angle increases the polarization begins to change from the

situation at zero phase, the change spreading outwards from

the subearth point. At ' = 120 we begin to notice that the

polarization at the center of the disk has increased and is

becoming perpendicular-to the earth-planet-sun plane (the

equatorial plane in the figures). This continues until at

' = 600 the directions have become virtually perpendicular to

this plane and the percentages have-become more-equal over

the disk, with the edges-of the illuminated disk still pos-

sessing the strongest polarization. The absolute maximum is

approached at the pole. The polarization everywhere increases

monotonically with ' until a maximum is reached near 90° , the

scale reduction from 600 to 120° masking this somewhat.

Beyond 90° the polarization decreases again, while be-

coming increasingly radial at the center of the illuminated

cresent, the radial nature spreading to the terminator and

limb as V increases. At 160° , the largest phase angle cal-

culated for Jo = 1, the appearance is mostly radial with the

exception of an area very near the terminator.

The scales for 600-1200 and for 1400-1600 are reduced

by factors of 0.16 and 0.44 relative to the scale from 1°-300° .

The inserts are enlarged by 4.0.

The pictures with single scattering removed, M, are

similar to the T pictures but show an increased tendency to
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the radial direction at all phase angles. For T = 1600 the

M polarization is larger than the T polarization, but it

should be remembered here that the actual intensity is great-

ly diminished. What can be learned from all of this? We are

most interested in what we can generalize to all phase func-

tions. The discussion below has in fact resulted from a

comparison of this case to two distinctly non-Rayleigh cases

which we discuss later. Thus there is a high probability

that the general points we make are truly general. The dis-

cussion, in places, relies on a simple picture of secondary

scattering and to this extent we are treading on soft ground.

Understanding multiple scattering and its profusion of dif-

ferent scattering geometries in successive scattering events

is not easy, and we shall be content if our simple explana-

tions are sufficiently indicative.

Before we begin let us make a few points about polari-

zation in general. The main point we wish to emphasize is

that the arrows we have drawn are arrows, not vectors in the

usual sense. Thus for light of the same intensity and degree

of polarization, two arrows at right angles cancel and two

parallel arrows add to one of the same length. If these

arrows make an angle of Xi and X2 with the meridian plane of

emergence the resulting polarization is reduced by the factor

cos(x1-x2). Percent polarizations cannot be combined unless

theintensities are known as well.
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One further reminder: The scattering matrix S where

I = S'F/4p has 16 components, 8 of then even and 8 of them

odd in A4. Thus we note, from the discussion in Part I of

the thesis, that for unpolarized light incident, I and Q

are cosine functions of AS and U and V are sine functions.

This brings us to the radial polarization at small

phase angles. At every point on the disk then ,'-c+w , the

angle between the earth-point point-sun lines (see figure

2.1) , is close to zero yielding U 0. Now

2.21 tan 2X = U/Q

so that X = 0° or 90° depending on whether Q is positive or

negative respectively. X is measured from radial lines

drawn from the subearth point and so the polarization is

either radial positive (X=0° ) or tangential negative (X=900 ).

We will discuss the choice between radial and tangential

shortly.

Another equally valid though less mathematical point of

view is that at zero phase angle no scattering plane is de-

fined and the only defined directions are radial lines and

concentric circles. The direction of polarization is thus

determined by symmetry. We shall see that we have a very

good measure of what we mean by the ambiguous term, "degree

of symmetry" in

2.22 (1-sin A0) - s
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where s ismdfined as the symmetry factor. At zero phase

s = 1 across the disk.

The question now is why radial positive rather than

tangential negative. A hint of the answer is in our deci-

sion to use the words positve and negative in reference to

these directions. The answer will be found in the second-

ary and multiple scattering and the fact that the polariz-

ation of the single scattering phase function is positive

at all scattering angles. We discuss this in detail below.

The polarization at the center of the disk must be

zero at zero phase. Atthe limbs it must be zero as well

since the glancing angles of incidence and reflection insure

that only single scattering is important. The symmetry of

single particle backscattering implies that light scattered

back in the direction of incidence is unpolarized if the

scatterers are spherical. Thus another question, implicit

in the previous question is why there is any polarization

at all atzero phase. This too is a result of multiple

scattering, as we shall see.

Let us try to describe a secondary scattering event.

Consider a point on the disk P a distance 8 from the sub-

earth point Eat a phase angle of zero. The scattering

geometry is shown in figure 2.3 and is.observed from above

the subearth-subsun point E,S. We assume for simplicity

that all secondary scattering at P arises from points along
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E,S

Figure 2.3 Geometry of a simplified set of secondary scattering events at

phase angle ' = 0. Light is initially incident at A, B, C, D, and P'

and is scattered again at P. The short lines normal to the radii from

P suggest the direction and magnitude or the polarization of the light

scattered from A, B, C, and D toward P for the Rayleigh phase function.

Distance P E corresponds to 0 as in figure 2.1. Angle y at P' between

the observer and P' P.is not shown.
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concentric circles around P lying at or near the surface.

ABCDA is one such small circle. The illumination at any

point P' on the circle,is the same and arrives making an

angle e with the local normal. The light is scattered once

at P' though an angle y (not shown, due to the geometry)

and arrives at P polarized due to the scattering at P'. The

magnitude and direction of the induced polarization is in-

dicated on the figure for 4 selected points A, B, C, and D.

Rayleigh scattering is assumed.

The light is Mattered again at P through an angle 7-r¥y,

and the,polarization is changed once more. If it is realized

that for both scattering events at P' and P the plane of pol-

arization is normal to the plane of the paper through P'P

then it is apparent.that the light emerging from P will be

polarized perpendicular to P'P for positive polarization at

P and PI. As P' moves about the circle the scattering angle

y goes from a minimum of 7/2-0 at C to a maximum of w/2+0

at A passing through 7/2 at B and D. At 7/2 the polariza-

tion is a maximum for the Rayleigh phase function. Thus

we see that the polarization induced by secondary scatter-

ing lies in a radial direction.

We can see row also why the polarization increases as

we move away from the center of.the disk. Near the center

of the disk the range of scattering angles decreases and

approaches w/2 for all points P'. Then the polarization is
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more nearly equal at A, B, C, and D and cancels to a large

extent. At the limbs the cancellation is less effective and

the secondary polarization is large.

A more general point can be made. At zero phase (and,

less accurately, at small phase angles as well) the polari-

zation observed is the result of averaging (in the sense des-

cribed below) the polarization over all scattering angles

from r/2-0 to 7r/2+6, when the plane of polarization and in-

tensity are properly accounted for.

It is not our purpose here to develop these concepts

beyond the intuitive. Yet it is possible to describe math-

ematically the previous discussion and we do so below. The

derivation is lengthy and complex geometrically so only the

results are given. Let pl(y) and p2(y) represent the comp-

onents of the single scattering phase matrix such that

I1 pi P2 I
2.23 Is j pl p2= Ii

QS p 2 p i Q

Then for unpolarized light incident the polarization after

two scattering events as described above is given by

2.24 P = Q/I

where I = I {pl(Y)pi(7-y) + p2(Y)p2(W-y)}da

27*

and Q =- {pl(y)p2(7-Y) + p2(Y)pl(f-Y)}cos 26 da
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and where cos y = sine cosa

tan 6 = sece tana

a is given in figure 2.3. 6 is an angle similar to a but

measured in the plane of the paper. If P is positive the

polarization is radial, and tangential if it is negative.

At larger phase angles we saw the polarization in-

crease most rapidly at the center of-the disk all the while

becoming increasingly positive. The-increase in the polar-

ization is due to both single and multiple scattering, and

is too complex to discuss intuitively other than to remark

that we wouldexpect .it to change from zero. The change in

the direction of polarization is at first sight difficult

to understand because naively we might feel that orientation

of the direction of polarization to directions defined by a

scattering plane is a single scattering phenomenon and sin-

gle scattering hould be smallest near the center of-the disk.

A glance at the T and M figures for T=12° and T=20° shows that,

contrary. to expectations, the orientation change is due to mult-

iple scattering, the single scattering of course helping as

well as T increases.

We can gaina better feel' for this change in direction

if we look at the "symmetry" of the scattering situation. The

subearth and subsun points, E and S, become increasingly sep-

arated as T increases. Near disk center the concept of "rad-
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ial" loses its meaning for we must specify radial to what,

E or S. At the limbs the question is less important because

the polarization can point towards the general direction of E

and S and still retain a radial character. Loosely, we can

say that scattering at the edge of the disk is more "symmetri-

cal" than near the center. Near the center the symmetry fac-

tor s (given by equation 2.22) is variable and not equal to

1; near the edges it is nearly 1 at all points.

The symmetry factor works as an intuitive crutch be-

cause it is directly related to U. When s = ±1, U, an odd

function of Ap, is zero and the polarization, according to eq-

uation 2.21 must be radial or tangential. U increases most

rapidly near the center of the disk for there AS increases

most. rapidly as V increases. Thus X is not zero, and the pol-

arization can no longer be radial.

It is by no mans obvious why U should vary in such a

way to make the orientation perpendicular to the scattering

plane rather than just variable. A general statement that

can be made is that at intermediate phase angles multiple

scattering, even with single scattering removed, remembers

the orientation of the pane of single scattering quite wells

especially near disk center. We shall see this again in the

other two phase functions we have investigated.

At.600 and 900 the direction of polarization is rath-

er accurately perpendicular to the scattering plane, due to
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the large single scattering polarization. The M polariza-

tion shows this too, as we have mentioned, but is less strong-

ly polarized.

The increasingly radial nature at V = 1200,140°,160° is

due again to U - 0 or to s + -1 for all points on the disk.

It is difficult to see, but the change towards radial is slower

at the limb and terminator, due to a competition between sin-

gle and multiple scattering, the single scattering becoming

increasingly important for grazing angles. We shall see a

more vivid example of this in subsection B.

The enhancement of single scattering by grazing angles

of incidence and reflection is further emphasized by the pol-

arization enhancements at the poles. There both scattering

directions are grazing and multiple scattering is smallest.

The previous discussion dealt with Rayleigh scattering

for a single sattering albedo wO = 1. Figures 2.14 to 2.19

compare wo = 1 with wo = 0.9 for T.scattering. It is inter-

esting that both.sets of figures should be so similar, con-

sidering that the Bond albedo for w0 =. (1.0,0.9) is (1.0,0.48)

respectively. For io = 0.9 and small phase angles the polar-

ization is larger near the center of the disk, the increase

spreading to the limbs towards T = 90° . Near the poles, how-

ever, the:polarization changes little with wo for all phase

angles.



96

These effects are Just the result of the decreased di-

lution of the single scattering polarization by multiple

scattering, where it must be borne in mind that the multiply

scattered component is itself significantly polarized, and is

in fact larger than the singly scattered component over large

portions of the diskat large and small phase angles. The

dilution is greatest near disk center for 5> 0, accounting

for the change there. At intermediate phase angles the sin-

gle scattering polarization is high and the more weakly pol-

arized M component causes less dilution than for 0o = 1.

Finally in this section on Rayleigh scattering we deal

with a graph for wo = 0.99 and T = 170° , figure 2.20. This

is included because the recent calculations of Kattawar and

Adams (1971) have shown that the disk integrated polariza-

tion is actually negative for V > 164° . Figure 2.20 is the

only computed case which falls in this range. Our own cal-

culations for the disk integrated polarization at 1700 gives

a positive value there, but our integration scheme most cer-

tainly is unreliable at such large phase angles.

How then can we explain negative polarization from

positively polarizing particles? The answer lies with the

geometry. At T = 1700 the arrows are decidedly more radial

than at T = 1600. For the radial positive regional polari-

zation to yield a positive disk integrated polarization the

positively polarized intensity (the component Q of the Stokes
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vector) obtained-by integrating from the poles to latitude

+450 must be greater thanthe negatively polarized intensity,

obtained by integrating from latitude ±450. to the equator..

But for truly radial polarization this is not possible, for

there is a greater integrated. flux .from the equatorial re-

gions than from thepoles due to the geometry. Thus posi-

tively polarizing particles should always yield a region of

negative polarization at. very large phase angles. A similar

statement applies to negatively polarizing particles. The

phase. angle at which the reversal occurs is a function of

the degree of-forward scattering. For Rayleigh scattering

the reversal occurs near 1641°while for cases B and C a re-

versalis not yet,apparent at,1700 judging from the non-

radial and non-tangential polarization that is seen in the

figures.

In figure 2.21 we give the disk integrated polariza-

tion ofa Rayleigh scattering planet of infinite optical

depth as a function of phase angle and single scattering

albedo. For wo -+ 0 only the polarization of the single

scattering phase function is important and we have includ-

ed this case for comparison. While the calculations are

accurate to within, ±2% polarization beyond 1400, we do

not-display results beyond 1350 because we want to discour-

age comparisonfor the purpose of accuracy testing in.this

region.
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Both the T and M polarization increase with decreasing

2o because the dilution by the lesser polarized higher orders

is less since their intensity is less.

An unsuccessful attempt was made to derive the multi-

ple scattering results from a knowledge of the single scat-

tering polarization and the total intensity. The interested

reader is referred to Hovenier (1971) for a successful at-

tempt using singly and doubly scattered light.
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Figure 2.5 Rayleigh scattering, wo = 1; (a) = T; (b) = M; 4 = 6° . Note

radial positive character. M polarization is non-zero and greater in

fact than the T polarization.
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Figure 2.6 Rayleigh scattering, o = 1; (a) = T; (b) = M; ~ = 120. Note

increase at center of disk and associated change towards positive,

( normal to scattering plane).
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Figure 2.10 4 = 90° . At this phase angle, Rayleigh scattering gives 100%

polarization for single scattering.

Figure 2.11 = 120° . Maximum deviation from positive direction is 9° in

the T polarization.
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Figure 2.12 $ = 140° . Approaching radial positive again, Maximum T deviation

from positive direction is 150, at center of visible cresent. Note scale

change.

Figure 2.13 ~ = 1600. Mostly radial positive; more apparent in M polarization

than in T polarization.
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Figure 2.14 Rayleigh scattering in a semi-infinite atmosphere at two different

Io's. Upper (a) is for;o
0
= 1; lower (b) is for ~O = 0.9; corresponding to

Bond Albedos of 1 and 0.48 respectively. Note striking near equality. i = 1°
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Figure 2.15 Rayleigh scattering (a) o = 1; (b) o = 0.9; p = 120. Central

portion of disk are most affected by change in, o0



109, .

(b)

I120%

Figure 2.16 Rayleigh scattering (a) o = 1; (b) o = 0.9; ~ = 30° . Central

portions of disk are most affected by change in 10.
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Rayleigh scattering (a) ~o = 1; (b) ~o = 0.9; * = 90°· Influence

smallest at pole.

Rayleigh scattering (a) MO = 1; (b) ~o = 0.9; ' = 140° · Influence

smallest at pole.
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Figure 2.19 Rayleigh scattering (a) (o = 1; (b) ~o = 0.9;
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Figure 2.20 Rayleigh scattering o = 0.99; T. 9 = 170°. At this phase angle

integrated polarization has been shown to be negative, although detailed

appearance is radial positive. See text for explanation.
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B A Forward Scattering Non-Rayleigh Phase Matrix

This phase function is important because it is the

only one of the three we discuss which displays both posi-

tive and negative polarization, possessing in fact two null

points besides the ones at 0° and 1800 (see figure 2.23).

It is also non-Rayleigh and elongated in the forward direc-

tion, as shown in figure 2.22.

The disk integrated polarization also displays two

neutral points, and we shall investigate the disk behavior

near these points. We will see how the direction of polar-

ization is affected by phase angle and position on the disk

for both T and M polarization. We will find that many of

the statements made about Rayleigh scattering apply here

as well, although different in detail.

For completeness we give below some of the details

of the phase function. Its forward elongation is character-

ized by the average of cose over the phase function <cose>=

0.84, whereas <cosO> = 0.0 for Rayleigh scattering. It has

a positive polarization at intermediate phase angles, but

is negative for small and large values of T. See figures

2.22 and 2.23 at the end of this subsection. Results are

displayed for T = - and an arbitrary choice of 1o = 0.997

corresponding to a Bond albedo of 0.73.

The set of parameters necessary to reproduce the phase

function from the Mie theory follows. We chose n = 1.31+0.0i

114
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and a distribution of particle sizes according to the function

2.25 n(a) = AaO exp(-ba)

the modified gamma function used by Deirmendjian (1969) to

describe real distributions. Here we chose B = 1, y = 3 and

b = 1/3. This choice of parameters does not correspond to

any of the normally selected cloud and haze particle distri-

bution functions (DeirmendJian, 1969), the distribution func-

tion decreasing slowly for small particles, and abruptly

for large particles. The choice resulted from a keypunch-

ing error--aa was computed as aB so that the exponent of a

was 1. A choice of X = 2.02 results in an average size par-

ameter a = 5.00. (a is an average of a = 2ra/X over n(a)

weighted by the scattering cross section, ra2Qs, as calcu-

lated in the Mie theory. That is

_ faTra2 n(a)Q (a)da

fwa2 n(a)Qs(a)da

The above parameter choices result in intensity and polar-

ization phase functions which are quite ordinary, although

more Rayleigh-like than a = 5.00 would normally imply and

more Rayleigh-like than we desired a priori.

Figures 2.24.- 2.34 show the disk T and M polariza-

tion for selected phase angles. Note that the scale varies

over many of the pictures and that almost nowhere is the

polarization as strong as that for Case A. The polarization

as small phase angles is so small--in fact on the order of

0.1%--that limiting accuracy has been approached. However,

the fairly continuous behavior of the polarization over phase
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angle and disk position increases the confidence in the re-

sults. Typical polarization observations are accurate to

+0.1%.

First let us note those qualities that this scattering

law has in common with the Rayleigh law. The polarization

is radial for small phase angles changing to vertical as the

the phase angle and polarization increase. Beyond 1700 the

polarization is tangential, a result of negative polariza-

tion. Radial or tangential polarization is a result of sym-

metry, as we have said before. We also see that the change

from radial occurs near the center of the disk first, the

orientation to the directions defined by the scattering plane

becoming better near the limbs as ' increases. This was ex-

plained in terms of symmetry properties in case A.

There are many additional properties that did not-ap-

pear on the Rayleigh planet, aside from the behavior at the

neutral points. The polarization stays oriented to the scat-

tering plane, i.e., positive or negative even until T = 1600,

whereas we saw a radial character developing near Y = 1200

for case A. The explanation for this can be found in the for-

ward scattering behavior of the phase function, which produces

a larger single scattering intensity at.large T. (See figure

2.35, where the disk integrated intensities for cases A and B

are compared.) Note also that the M polarization as well dis-

plays the same characteristics. Since the M light has suffer-



117

ed comparatively fewer scatterings to reach the upper bound-

ary of the atmosphere than for Rayleigh scattering, and the

polarization is less tangential here (radial, for case A).

This means that-the radial character is a result of losing

the orientation of the scattering plane in many scattering

events. It is-interesting to note that secondary and tert-

iary scattering have such a good memory of the scattering

geometry. We will see this phenomenom repeated in case C.

In view of this, it may be possible to obtain particle

size and composition information from the phase angle at

which a planet gives radial or tangential polarization.

Another phenomenom that was noticed in case A is the

averaging quality of secondary scattering. This is dram-

atically seen here, for in figure 2.36 we notice that the

disk integrated T polarization is negative for small phase

angles as in the single scattering polarization (figure 2.23),

but the M polarization is-positive during the entire negative

branch. The positive polarization comes from the large pos-

itive branch at intermediate Ti's. The appearance of the

disk near the maximum negative excursion of the T polariza-

tion is shown in figure 2.26.

Figure 2.27 shows the polarization at T = 150, near

the neutral point at T = 160. :Figure 2.28 for Y = 219 dis-

plays the planet at a point where the single scattering pol-

arization is almost zero. The polarization across the disk
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at the value of ' where the single scattering polarization

is maximum can be found in figure 2.29. This does not cor-

respond to the maximum in the disk integrated polarization,

which is displaced towards larger T.

We also include some diagrams near the second null of

the phase function occuring at T = 123° . At T = 1200 (fig-

ure 2.30) the T polarization is zero, while for T = 1260 it

is negative. At T = 1200 the effect of single scattering

can be seen in the positive polarization at the limb and

terminator (here the phase function gives positive polariz-

ation), while the averaging of the forward scattering nega-

tive polarization can be seen in the center of the disk. The

multiple versus single scattering competition was noted for

Rayleigh scattering as well.

From 1230 to 1800 the single scattering polarization is

negative and the electric vector maximum becomes parallel to

the scattering plane. We have also included T = 1730 where

the polarization, though extremely small, has become tangen-

tial negative. This is most visible in the M diagram, but

since the M intensity is small, the T diagram does not show it

on this scale.

Finally in figure 2.37 we give the variation of the disk

integrated T polarization with ~o. As we would expect, the

largest phase angles are least affected by the variation, for

there the multiple scattering dilution is reduced.



119

0 0 0 0
ro) OC 

(uo!4unj aso0d) UO!iDZ!Dlod 4uaoJad

0 0
C

O

0
L)

0
N~

c
o
0
V0

4
Sa.,^

'b

0
(D

o

cu

r-

C.

o

o

C,1

t

d)

4o-

o

0

CMCM

I%



120 .

(a)

=T

I

+-

j

A -

(b)

= M

I
Z

_ __ 0.17% 01 5%
Insert

Figure 2.24 Case B. Polarization across disk for a forward scattering phase

function as described in the text and in figure 2.22 and 2.23. Note the

greatly enlarged scale as compared to the Rayleigh case. The scale of the

central portion of the disk has been expanded. The single scattering

polarization is negative until 210. Upper (a) = T; lower (b) = M; p = 0° .
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Figure 2.25 Case B. * = 3° . T polarization changes from negative near center

to radial positive to negative on sunward limb. M polarization, an average

over all phase angles in the sense described in the text, is radial positive.
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Figure 2.26 Case B. p = 9° . T polarization is negative near center of disk,

yet M polarization is positive. Single scattering polarization is -11% and

becomes increasingly negative until = 15°; disk integrated T polarization

is -0.1% and peaks here; disk integrated M polarization is +.0.1% and is

increasing.
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Figure 2.27 Case B. 1 = 15° . Single scattering polarization reathes a maximum

negative value of -15% here; integrated T polarization is almost zero,

accounting for the chaotic appearence.
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Figure 2.28 Case B. p = 21°. Integrated T = M at this phase angle. Single

scattering polarization is zero, yet polarization at center of disk is

normal to single scattering plane.
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Figure 2.30 Case B. i = 120°. Near second null of phase function at 123° .

The effect of a single scattering polarization of +1% can be seen at limb

and terminator. T polarization = 0%, M polarization = -0.15%. Note

variable direction of polarization.

Figure 2.31 Case B. p = 126°. Polarization on other side of single scattering

null. Most polarizations are negative.
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Figure 2.32 Case B. p = 144° . T polarization is uniformly negative although M

polarization shows deviations towards tangential negative.

Figure 2.33 Case B. i = 1600. Tangential negative characteristics appear in

M polarization more so than in T polarization.
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Figure 2.34. Case B. i = 173°. T polarization is very small, but tangential

negative. M polarization is obviously tangential negative, but intensity

is very small.
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C Venus at 1 Micron Wavelength

a. Theory

The composition of the clouds of Venus is still an

enigma, despite 2 American and 4 Russian probes to the veil-

ed planet. Water ice, CO2 ice and suspended dust particles

have been proposed, as well as a host of other constituents,

among them carbon suboxide, ferrous chloride dihydrate and

polywater (Sagan, 1971).

Recently Hansen (1971) suggested a model for the cloud

particles which is both startling in its conclusions and pow-

erful in its evidence. He calculates that the particles are

round, hence in a liquid state, that they have a mean radius

near 1 micron and that their index of refraction is n=1.45±+0.02.

This was derived from a model which fits the phase and wave-

length dependence of the disk integrated polarization.

If Hansen's phase function is correct, then it should

also be able to match the polarization across the disk mea-

sured by Coffeen and Gehrels (1969). This would be an addi-

tional test of the model. Alternately, we may assume that

the phase function is correct and look for secondary effects.

Both procedures will be explored here.

A description of the derivation and form of the phase

function follows. We chose n = 1.45 and the particle size

distribution according to equation 2.25 with j = 6, y = 1,

132
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and b = 8. This gives a mode radius rc = 0.75p which is

smaller than the value rc = 1.1p finally chosen by Hansen

for a best fit. As we saw at the beginning of. section IV,

this affects the integrated results only slightly, and very

little indeed at T = 600 and T = 770 where Coffeen has data

at 1l wavelength. The wavelength was chosen to be 1p. Funds

did not-permit calculations at other wavelengths observed by

Coffeen.

The single scattering albedo was-chosen using van de

Hulst and Grossman's (1968) similarity relations as a first

and only iteration to give a Bond albedo equal to that of

Venus at 1p. A choice of wo = 0.9995 gave AB = 0.91, slight-

ly higher than but with the error bars of, the value AB = 0.89

observed by Irvine (1968).

The phase function calculated by the Mie theory for

the above input parameters has an average size parameter of

a = 6.6, and therefore is peaked in the forward direction.

It is peaked in the backward direction as well so that

<cose> = 0.69, slightly less than case B which had a smaller

a. Figures 2.38 and 2.39 at the end of this subsection show

the single scattering intensity and polarization as a func-

tion of ' = f - scattering angle.

To discuss the disk polarization we should first note

someof the features in the single scattering polarization.

The polarization is always negative having a very strong.
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maximum = -54% at ' = 10° , a relative minimum at T = 280 and

a broad maximum near T = 500, decreasing monotonically (in ab-

solute value) to 0% at T = 180° .

Departing from our previous procedure of discussing the

disk integrated results last, let us look at figure 2.40 which

shows the results of that calculation for T and M polariza-

tions. We notice immediately that the M polarization does

not have a relative maximum corresponding to the maximum at

' = 100 of the phase function itself, although some effect is

seen. This once again is the result of the averaging process

we discussed previously. The peaks in the T polarization are

displaced towards larger f because of this. We may also note

that the total polarization has another maximum, not contain-

ed in the phase function. This is due to a competition bet-

ween the increasing importance of the forward single scatter-

ing at grazing angles, and the decreasing polarization.

It may be noticed that both cases B and C had large sin-

gle scattering negative polarizations near 100, yet in case C

the integrated effect is much more prominent. Note also that

the polarization across the disk is much greater near zero

phase for case C than for case B. Averaging over the posi-

tive and negative branches of the polarization curve could

have produced the small polarization that is observed in case

B. It is difficult to separate the effect of the averaging

process from other causes, however, for it appears that the



135

differences in the magnitude of the polarization between.

cases B and C could be due to the larger single scattering

backscattering in case C. (Compare figures 2.36 and 2.40

for the polarization and figures 2.35 and 2.41 for the inte-

grated intensities.) The large polarization of case C at

small phase angles has an important affect on the direction

of the polarization across the disk, as we will see very

shortly.

The variation of the T polarization with wo has been

calculated for this case as well; we display it without com-

ment in figure 2.42.

Figures 2.43 to 2,51 show the appearance of the degree

of polarization across the disk of Venus at 1 micron wave-

length for our model, Figures 2.52 and 2.53 compare these

calculations with Coffeens observations at two phase angles.

The scale is the same for all phase angles. Note that-here,

since the single scattering polarization is always negative,

we may read "tangential" for "radial" when comparing this

case to cases A and B.

It will be noticed immediately that for the total in-

tensity tangential polarization is practically absent for

V > 6° . T = 00 was not calculated, but we would expect it .

to be tangential there from symmetry alone,. Comparing this

case with case A for Rayleigh scattering, the absence of tan-

gential polarization is striking. From the previous discus-
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sion we would attribute this to large single scattering in-

tensity at large phase angles.

The tangential polarization, although overwhelmed by

the single scattering polarization, is present in the M pol-

arization at both large and small phase angles. In fact the

total behavior of the M polarization is very similar to what

we observed for Rayleigh scattering. The large M polariza-

tions near the poles will be observed to be tangent to the

disk at all points.

The absence of tangential or radial polarization over

a large range of phase angles including the region near zero

phase is quite an important result. It is most probably true

of all atmospheric models containing particles whose average

radii is larger than the wavelength, although we have not

made enough computations to be positive. Rayleigh scatter-

ing and scattering from large particles can thus be distin-

guished at a glance by the direction of polarization at small

non-zero phase angles. We believe that the general character-

istic of large transparent particles of enhanced polarization

in the region of enhanced backscattering intensity quickly

destroys the radial polarization as the phase angle increase

from zero.* More computations will be needed to determine

*The polarization and intensity peak characteristic of the
primary rainbow for 7>>1 is only marginally present in the phase
function for Venus at 1 micron. The position of the rainbow
moves towards smaller phase angles as a decreases (and as the in-
dex of refraction increases). For n=1.45 the primary rainbow
should appear at 380, but the polarization peak here appears at
100 and the intensity peak at 190° .
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how well this effect alone can give information on the part-

icle size and index of refraction. The importance of the,

intensity peak on the polarization direction must also be de-

termined for a complete. understanding.

b. Comparison with Observations

The model that we have been discussing is significant

because it is able to match the disk integrated polarization

of Venus at 1 micron as well as at other wavelengths. As we

shall see now, the model also is consistent with polarizations

measured at selected points on the disk, lending further

weight to Hansen's (1971) conclusions. (Hansen has proposed

that the clouds of Venus are composed of particles with

n = 1.45±0.02 and a = 1l).

Unfortunately the polarization calculations we have

performed can be related directly to observations only in

the limiting case of measurements made with a resolution

element far smaller than the size of the disk. The actual

resolution element used by Coffeen and Gehrels (1969) did

not satisfy this condition. Thus to compare these observa-

tions with our calculations an integration over a small por-

tion of the disk, allowing for seeing effects., would have to

be performed. This was.not done and consequently in compar-

ingo r results with observations the following must be kept

in mind. Near the,terminator and limb, and especially at
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their intersection, the pole, the polarization increases

more rapidly than elsewhere, while the intensity decreases.

Thus any integration that does not fairly weight these areas

will tend to overestimate the polarization. Our crude inte-

gration made use of only data similar to the data in the fig-

ures and overestimates the polarization where noted above.

Figures 2.52 and 2.53 compare the observations and cal-

culations. The circles show the area of the measuring aper-

ature, not allowing for seeing effects, which are consider-

able when observing Venus. The upper and lower numbers give

the observations and computations repectively. The lines

drawn through the data circles indicate the observed direc-

tion of the electric vector maximum. In the intermediate

limb regions between the pole and equator Coffeen observed

that the direction of polarization is more nearly parallel

to the limb, being deviated in that direction by an average

of 5° . Our calculations show a deviation of 4°. The plane

of polarization is rather well fitted elsewhere on the disk

as well. A good agreement is also found for the magnitude

of the polarization except near the limb and especially pole

as discussed previously.

The comparison, within the computational limitations

we have mentioned, and the observational variability discus-

sed in the next section, supports the following statement:

the detailed structure of the planetary scattering may be
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satisfied as well.by Hansen's atmospheric model. This is

encouraging for it means that if we believe Hansen's model,

we may begin to model the regional departures from the aver-

age. Thus cloud top altitudes, variabilities in the index

of refraction, particle size distribution and particle shape

could be mapped though the effects may be difficult to separ-

ate in practice.

The preceding discussion does not confirm Hansen's mod-

el, though it does argue in its favor. We believe that Han-

sen's-model stands strongly by itself, if we apply the test

of Occums Razor, for it is the simplist explanation to fit

all the data. A two layer model should be investigated, how-

ever, for it is not clear that a two layer model with differ-

ent indexes of refraction or particlesize distributions can

not do the job as well. A two layer model should be investi-

gated for an index of refraction of 1.45 is difficult to ex-

plain while 1.33 + 1.50 is not.
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(a)

IT

5% I 20%

integrated phase variation of Venus at one micron. = 6. Upper (a) = T;

lower (b) = M. T polarization is mostly negative, M polarization is

tangential negative. Scale is the same for all phase angles and is equal

to the scale for Rayleigh scattering with = 30° .
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(a)

4,-- -4 _____~_

(b)

=M

5% ' '207
Insert

Figure 2.44 Case C. 110, where phase function has a polarization peak of

-54%. M polarization unchanged from ~ = 60, except near the center where it
is larger and more negatively directed, similar to the behavior of the

Rayleigh phase function.



147

(a)

=T
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(b)
=' ,M

-- 4

-4

+N

U U~is U + -C L-·-· ._ -- _ L_ 4 _

I e4 5%
Insert

Figure 2.45 Case C. J = 300, near minimum of absolute value of T polarization.

The T polarization is largely negatively directed at this and other phase angles

shown. Contrast this with the radial directivity of Rayleigh scattering at

similar large and small phase angles..
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(a)

'i 4 20%

Figure 2.46 Case C. ~ = 600. Data is available for comparison here.

See figure 2.52.

- _-\
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(a)

= T

(b)

=M

+ ,_. _ _.. 

i_ 4_-

.* ± + J- --- _ - 4- ._ i 4-b

,j , 20%

Figure 2.47 Case C. ~ = 770. Data is available for comparison here.

See figure 2.53.
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Figure 2.48. Case C. i = 900

Fiugre 2.49. Case C. y = 1200

i 1 Ii20%
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50(a)

=T

+

50(b)

=M

4-

i'- -- ' 20%

Figure 2.50

51(a)

=T

-i-

51(b)

=M

+

' 20%

Case C. i = 144° .

Figure 2.51 Case C. ~ =

the largest phase angle

in this direction.

160° . Tangential negative not yet apparent at this

computed. M polarization does show some tendency
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Figure 2.52

7._2~
= 600

r2. 

Figure 2.53 Direction of
observed

·polarization

:ulated

=770
7117_4.

3. . _ 2.7

Figure 2.52 and 2.53 Coffeen's observations of Venus polarization at 0.99 P

and calculations compared. Data taken north and south have both been given.

Circles indicate approximate size of physical diaphragms used in the observ-

ations. Calculations at limb, terminator and especially at poles overestimate

polarization due to integration scheme used.



V LOCALIZED POLARIMETRIC OBSERVATIONS OF JUPITER AND VENUS -

DISCUSSION

Much of the discussion in section IV, while gleaned

from three very specific examples, may in-fact be quite gen-

eral in its application. For now we have a better a priori

sense of what to expect from the distribution of polarization

across a planet and we may compare the discussion of section

IV with the observations. We will see many of the calcula-

tions have observational counterparts. We also will make

some tentative suggestions about the scattering behavior of

the particles polarizing the light of Jupiter and Venus.

The suggestions are tentative because it must be realized

that no model calculations have been performed.

Polarization observations over the disk.have been few

and separated-by decades in time. Lyot (1929) did the first

principal work in the field, performing extensive visual

light observations of Venus, Jupiter, Saturn as well as of

Mercury, the Moon. and Mars using a Savart polariscope. Years

later Dollfus (1955) did a thorough study of these planets

at a variety of wavelengths with a Lyot polarimeter. A hist-

ory of-the work in the intervening years.may be found in Dol-

lfus's (1955) thesis. His work included observations of

disk integrated and regional polarizations as well as their.

secular variations over time with an accuracy of ±.1%. In

153
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more recent years localized polarization studies of Venus

have been published by Dollfus (1966) and Coffeen and Gehrels

(1969); Jupiter was studies by Gehrels, Herman and Owen (1969)

and Hall and Riley (1968) who also make observations of Sat-

urn as well (Hall and Riley, 1969).

1. Jupiter

Many of the observations show effects we have seen in

our calculations. All of the studies of Jupiter and Saturn

have revealed a radial polarization pattern in the ultravio-

let especially near the edges of the disk. Our Rayleigh

scattering calculations show this behavior. The polariza-

tion at the poles is always observed to be greater than at

the limbs. While our calculations show this, the effect is

only noticeable for phase angles 5 120 for the Rayleigh at-

mosphere. On Jupiter this effect is more probably due to a

difference in cloud top altitudes from equator to pole such

that a much greater molecular atmosphere overlies the clouds

at the poles (Gehrels et al., 1969). The polarization in-

creases from the center of the disk to the limbs as in our

calculations. There is a N-S versus E-W asymmetry however

such that the polarization is greater in the N-S direction

even at small phase angles (Gehrels, 1969).

The central regions of Jupiters disk exhibit a less

radial pattern which is much more chaoticthan our calcu-
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lations (Hall and Riley; 1968,1969) and may be useful in

modeling lateral inhomogenities in the distribution of cloud

particles or of cloud top altitudes. The position of the

electric vector maximum changes from positive to negative

in the central regions as the wavelength increases from ul-

traviolet to infrared (Gehrels et al., 1969; Dollfus, 1955).

If we take cases A and B to represent ultraviolet and infra-

red respectively then this phenomena is present in our cal-

culations; compare figure 2.6a for Rayleigh scattering and

figure 2.25a for case B. In the infrared the negative polar-

ization increases from the center outwards as the phase angle

increases (Dollfus, 1955). Compare figures 2.24a and 2.25a

for case B where this phenomena appears. These figures show

that while the center of the disk has a negative polarization

the edges display a radial positive direction. The observa-

tions, on the other hand, while showing a radial polarization

near the poles, show a tangential negative polarization at

the West (and presumably East) limbs in the infrared (Gehrels

et al., 1969). Since Rayleigh scattering is more important

at the North and South poles than at the limbs, perhaps a

more meaningful example of the phase variation of the central

regions which reproduces the phenomena at the West limb

would be figures 2.43 and 2.44. (The negative tangential nat-

ure would be more apparent at smaller phase angles, but the

diagrams of the M light show what the behavior would be like.)
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A uniform homogeneous single layer model cannot ex-

plain the disk polarization of Jupiter. In visible light

the optical depth of the molecular scattering layer is about

0.5 above latitude 45° while it is about 0.05 at smaller lat-

itudes and along the equator (Gehrels et al., 1969). An

optical depth of 0.05 is insufficient to blanket the effects

of the cloud polarization and we find that along the equator

the polarization in the infrared behaves in a characterist-

ically negative manner. In the ultraviolet, on the other

hand, the equatorial polarization behaves in a characterist-

ically positive manner. The optical depth in the ultravio-

let of the equatorial Rayleigh atmosphere above the clouds

would be 0.3 according to the usual 4 law. This depth of

Rayleigh scatterers may be sufficient to account for the

positive polarization. Two layer model calculations may

be required to confirm this, however. With the removal

of the effect of the Rayleigh atmosphere there may be enough

data as a function of position on the equator, phase angle

and wavelength to be able to meaningfully model the cloud

composition.
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2. Venus

Turning now to Venus, there are many more observations

available than for Jupiter, including variable features over

many years and secular daily changes as well. We shall dis-

cuss only a fraction of the observations.

In our calculations we have seen the polarization in-

crease towards thepoles, as is observed. All the observa-

tions of Coffeen and Gehrels (1969) show polarizations most-

ly perpendicular or parallel to the plane of scattering over.

the disk in agreement with all three of our cases at the an-

gles observed. Deviations from these directions, however,

is not always in the sense predicted from the nature of the

integrated phase function even allowing for the scatter in

the observed directions. Thus at 3400A, where the integra-

ted polarization is always positive, Coffeens observations

show a turn towards the negative tangential near the limb.

This is not understandable within the plane parallel uni-

form models we have derived. In addition to these. unpre-

dicted deviations, there.are secular changes in the Stokes

intensity from dayto day that require the formulation of.

more complex models. At 600 phase angle Dollfus (1955)

observed polarized spots changing from day to day as well

as a changingdistribution of negative and positive regions.

We would not expect to see both negative and positive re-
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gions on the same disk for one uniform layer except near a

null.

Near ' = 60° Dollfus, as Lyot before him, observed

the polarization of the poles to change, the position of

the maximum shifting off the poles and suffering deviations

in direction of up to 18° . Dollfus interprets this as being

due to cloud structure: bands, striations and coils. We

remark that while this is certainly possible similar effects

can result from a changing index of refraction (as in a two

layer model) or particle size distribution.

Near ' = 100 the polarization was observed by Dollfus

to pass through a null in the disk integrated light. This

may be compared to figures 2.26,2.27 and 2.28 for case B.

The polarization observed is non-uniform, being positive in

some regions and negative in others as well as displaying

considerable variability. Near the terminator the direction

is more tangential negative than at T = 600. The more tan-

gential behavior of higher order scattered light probably

dominates in this region. The observations (Dollfus,1955)

as well as the calculations here (figures 2.27 and 2.28)

show that small changes in the phase angle can cause large

changes in the direction of polarization. The observed

polarization across the planet near the null is not as un-

iform as in the calculations nor is it symmetrical north

and south. If we assume the localized polarimetric obser-
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vations can be matched in detail by Hansen's (1971) model

of the cloud particles--as we have shown probable in case

C--then behavior at null points becomes an important tool

to probe for more refined structure. The particles size

distribution, index of refraction, cloud structure and the

effect of variable cloud altitudes all affect the direction

of-polarization-and the position of the null point. The

variability of these conditions might be investigated at the

null points.

Dollfus (1966) has also observed the polarization ac-

ross Venus when it appears as a thin crescent at large phase

angles. He observed that the electric vector maximum is

oriented parallel to the limb, i.e. tangential negative, in

both green and red light. The polarization was not maximum

as the poles, but elsewhere along the crescent. Dollfus

does not believe this tangential orientation can be explained

by multiple scattering in the atmosphere. The integrated

polarization is positive at these phase angles, thus seeming

to imply radial, not tangential, polarization. He concludes

that this tangentialism and similar tangential tendencies.

observed near thelimb at other phase angles can be explain-

ed only by banded or striated cloud. structures.

We disagree. The positive polarization at large phase

angles is mat probably due to the process which causes neg-
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ative polarization for ' > 1640 for Rayleigh scattering as

calculated by Kattawar and Adams (1971). This was explained

in section IV A. As the planetary phase increases we have

seen (figures 2.11, 2.12, 2.13, 2.20, 2.33, 2.34, 2.51) the

polarization across the disk goes from negative(or positive)

to tangential negative (or radial positive). The integrated

polarization, however, where we now rely on Kattawar's cal-

culations, would go from negative (or positive) to positive

(or negative), due to the larger weight given the illuminated

crescent in the equatorial regions. This appears to be the

explanation of what Dollfus has observed.

The smaller polarization at the poles, in contrast to

theb havior at other phase angles, may be due simply to the

larger polarization of the multiply scattered light which is

more visible towards the equator.

Polarization studies are a potentially powerful source

of information on particle composition, size and distribution

in the atmospheres as well as on the surfaces of the planets.

The interpretation of these data is still in its infancy.

The potential for successful interpretation is high because

multiple scattering does not wash out polarization features

as it does intensity features. The future will bring faster

electronic computers, and faster computation schemes as well

so that many model calculations may be easily performed. The
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next few years can be expected to bring an order of magni-

tude increase in polarization observations of a type not

possible a few years ago. The polarization experiments

aboard the Mariner 9 mission to Mars, the Mariner 10 swing-

by.mission to Venus and Mercury, the Pioneer F and G missions

to Jupiter and.the Grand Tour missions to Jupiter and the

rest of thesolar system with provide accurate (±.a few %)

regional and diskintegrated observations of the planets

at a wide range of phase angles. The missions to the outer

planets will permit-viewing at phase angles not accessible

from the earth. Meaningful disk integrated and regional

model calculations will then be possible.



APPENDIX

The investigation of cases A, B, and C in the main

text involved, in part, a parameterization in ao. The ef-

fects of varying So was not fully investigated above, nor do

we do a complete study here. It was felt, however, that

some of the information we obtained in varying wO, while

not useful to our argument, would be worthwhile summarizing

here.

Below in Table A.1 we give the geometric albedo, p,

the phase integral, q, the Bond albedo, AB, and the quantity

q/p(500 ), supposed to be a constant from Russell's (1916)

law. The quantities were defined in the test. The results

were calculated by scalar intensity methods (designated INT)

and by matrix methods for the Stokes intensity (designated

POL). Both sets of results are shown in-the table.

The geometric albedo decreases as we would expect as

j, decreases for all three cases. There is a difference

between the values of p calculated by scalar and matrix

methods, the difference being greatest for Rayleigh scat-

tering and small-or non-existent for the other two cases.

The quantities q and q/p(500 ) show the same behavior in the

comparison of scalar and matrix derived quantities. The

magnitude of the differences correlate with the degree of

forward scattering given by <cos e>. Experience with var-

162



163

TABLE A.1

AB j q/(50°)

POL INT |POL |INT I POL INT |I IIINT ,

CASE A:

Rayleigh,

<cos3>= 0.0

CASE B:

a= 5.0

<cosO>=0.84 2

CASE C:

¢= 6.6

<cos6>=0.694

41

0.9999

0.999

0.995

0.990

0.975

0.950

0.900

0.800

0.600

0.9995

0.997

0.993

0.990

0.950

0.9995

0.999

0.995

0.985

Wo p q

0.790

0.778

0.743

0.682

0.640

0.565
0.491

0.400

0.293

0. 172

0.558

0.446

0.365

0.326

0.142

0.675

0 .649

0.550

0.445

0.744
0.733

0.697

0.637

0.596
0.522

0.451

0.366

0.268

0.160

0.558

0.446

0.365

0.326

0.142

0.674

0.647

0.548

0.443

1.25

1.25

1.25

1.25

1.24

1.23

1.22

1.20

1.17

1.15

1.57

1.64

1.70

1.74

2.07

1.35

1.35

1.36

1.36

1.33

1.33

1.33

1.33

1.33

1.33

1.32

1.31

1.28

1.23

1.57
1.64

1.70

1.74

2.07

1.35

1.35

1.36

1.37

0.990

0.975

0.929

0.850

0.794

0.695

0.597

0.479

0.343

0.196

0.878

0.730

0.621

0.567

0.294

0.911

0.877

0.747

0.605

2.09

2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.18

2.32

2.39

2.47

2.51

2.95

2.28

2.29

2.35

2.43

2.22

2.23

2.24

2.26

2.27

2.30

2.33

2.35

2.36

2.38

2.32

2.39

2.47

2.51

2.95

2.28

2.30

2.36

2.44
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ious phase functions has shown that only in the case of very

Rayleigh-like phase functions does a substantial difference

exist, both in these quantities and in the intensities them-

selves. Curiously, the Bond albedo is not affected by the

method of computation, at least to the accuracy of the tab-

ulated values.

The quantity q/p(500 ) has been found to be approximately

constant for many astronomical bodies, and a values of 2.2

is usually taken as its value. Veverka (1971) has shown this

to be a consequence of the rapid decrease of a planets bright-

ness as the phase angle increases. The variation with J0 in

the table indicates that for non-Rayleigh planetary atmo-

spheres at least the result also depends on the fact that the

albedo is high.
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Part III

RADAR OBSERVATIONS OF.THE MOON AND THEIR INTERPRETATION:

A MULTIPLE SCATTERING APPROACH

Abstract

It is proposed that the average .diffuse component of lunar

radar echoes results from the effect of multiple scattering

by rocks buried beneath the surface of the interior and

exterior ejecta blanket of fresh young craters. The multiple

scattering polarization computer program that was developed

in Part I is used to calculate the scattering matrix of a

plane parallel layer of buried rocks. The scattering matrix

is then integrated over the surface of a crater and the re-

sults of crater and ejecta blanket combined. A single choice

of parameters produces a model which shows good agreement

with observations. Inferred mean indices of refraction of

1.3 and 1.6 for the ejecta blanket at wavelengths of 3.8 cm.

and 23 cm., respectively, are consistent with measurements

on an Apollo 11 fine sample and indicate an increasing den-

sity with depth beneath the surface. Tests are proposed to

settle the question of multiple vs. single scattering. If

the model is correct then the difference in diffuse reflect-

ivity between maria and highland is due chiefly to a differ-

ence in the single scattering albedo of buried rocks. Then

properly prepared radar maps could serve as geological maps

of that mineral or minerals, perhaps ilmenite, which dominate

microwave absorption processes.

167



I INTRODUCTION

The typical lunar radar experiment consists of

illuminating the moon or a portion of it with a cir-

cularly or linearly polarized beam and receiving the

power in the sense expected from a perfectly smooth

dielectric sphere. In the case of circular illumin-

ation the expected sense is opposite to that trans-

mitted, while for linear it is the same sense. More

sophisticated experiments have also measured the power

returned in the unexpected sense. This is usually

referred to as the depolarized component, and is the

least well explained and, at the same time, potentially

the most informative datum on the nature of the lunar

surface.

The returned power may be analyzed according to its

time delay relative to the first return from the subradar

point and to its frequency spread relative to the fre-

quency of transmission. Power with a given delay is

returned from a circular annulus centered on the subradar

point. (Strictly speaking, the annulus is only an approxi-

mation since features such as mountains which are large

when measured in fractions of a resolution element, can

contribute even though slightly outside the annulus.)
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This provides a one-to-one mapping of delay space onto e

space, where 0 is the angle between the line of sight

and the local surface normal. The doppler spread of the

frequency provides the second coordinate needed to localize

the returned power.

The moon appears to rotate or librate during an

observation due to the combined motion of the observer

on the earth due to the earth's rotation, -th&e--non-circu-

larity of the moons orbit, and the inclination of the

moon's orbital plane and the earth-'s equator. Thus at

any given time a unique axis of libration is defined.

The locus of constant doppler shift is a-series of lines

parallel to this axis. The intersection of strips of

constant doppler shift with annuli of constant delay

provides localization of features with a two-fold de-

generacy. The degeneracy may be-removed by pointing an

antenna whose beam width is small compared to the angular

-size of the moon-to illuminate only one area at a time.

In this way maps have been prepared for most of the side

of the moon visible to the earth.

The results from the-resolution in de-lay are quite

interesting. The-polarized component shows a pronounced

peak in intensity for small delays,-followed by a much

slower-decline at larger delays, the dependence on e being
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approximately cos's5 until near the limb, when a cos eO' °

dependence is approached. The depolarized component has

no such central peak and follows a cos 0 law for most of

the range of 0. This slowly varying component of the

polarized and depolarized data is called the diffuse

component. It is this component which we hope to explain.

The peaked return is similar to that expected from a

polished specularly reflecting sphere and is called the

quasi-specular component due to its similarity to the

results expected from a-smooth sphere.

We hope to show that the diffuse component of the

polarized and depolarized power is due to multiple

scattering from wavelength sized rocks lying above and

beneath the surface of areas inside and in the ejecta

blanket of fresh young craters. To do this we apply the

multiple scattering program developed in Part I of this

thesis to spherical rocks buried beneath the surface of

an absorbing layer of dust having an index of refraction

n
s
. The scattering law that results is integrated over

the assumed parabolic surface of a fresh rocky crater

and combined with the scattering from the ejecta blanket

itself, appropriate-weights being given to each scattering

source. Using data on the nature of fresh craters, their

size distribution and-the distribution of boulders in

their vicinity we are able to match to a plausible degree
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not only the angular data,-provided by delay-doppler

techniques, but also wavelength dependence-of the cross

sections, maria-highland differences, and the absolute

value of the cross sections. Our main emphasis will be

on the average properties of the lunar surface integrated

over-large-areas -- either annulii of constant delay or

Maria-highland properties. The model, however, naturally

explains the data for large (a 10 km) fresh young craters

seen-as enhanced areas on radar maps.

The work here -differs-in three significant respects

from all previous work although some authors-do discuss

some of the points we raise.. The first and most important

departure is the invocation of multiple instead of single

scattering, though this has been discussed briefly by

Thompson et al. (1970). This is also the first detailed

multiple scattering attempt to-explain the polarized-

depolarized data. First order theories using a dipole

single scattering mechanism have been put forth pre-

viously by Hagfors (1967a) and Burns (1969). Lastly we

differ in our description of the actual physical place-

ment of the scattering elements. We assume that the sources

are discretely rather than uniformly located across the

lunar surface and that-the locations coincide for the

most part with the areas near fresh young craters.
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In the following section we will present a summary

of observations and previous theoretical work and discuss

more fully our departures from previous work. Sections

III and IV derive and discuss the single scattering

behavior of the scattering model. Sections V and VI

derive the scattering matrix for subsurface multiple

scattering in a crater and its ejecta blanket. Much of

the work in the last three sections we have mentioned

is not necessary for a complete understanding of the

argument and may be skipped over in a cursory reading.

The comparison of the observations-with our computations

for data taken as a function of position on the disk is

presented in sections VII and VIII. Section IX is

devoted to a discussion of-the high single scattering

albedo required by the results in section VIII. Obser-

vational tests of the model are proposed. Section X deals

with the absolute diffuse cross section, its wavelength

dependence and variation from highland to maria. The

discussion in IX and X implys that maps of the polarized/

depolarized power ratio may serve as mineralogical maps

of the lunar surface.



II THE OBSERVATIONS AND PREVIOUS INTERPRETATIONS

In this section we will present a survey of the

relevant radar data. The work of other investigators

will be examined and..the differences between previous

theories and.our present hypothesis.will be pointed out.

Basically the differences are-single scattering vs,

multiple scattering and homogeneous sources vs. discrete

sources. At the end of the section we present some non-

radar data which suggests the.. hypothesis-,of multiple

scattering from boulders beneath the surface near fresh

craters.

There are three'basic types. f:.observations with

one radar unit as transmitter and receiver (the monostatic

case): absolute cross section measurements,-measurements

as a function of delay averaged over a range ring, and

measurements as-a function ofposition: on the disk

averaged -over a range-doppler cell. -We:discuss each type

below in a separate subsection.. A.fourth type of obser-

vation making-use of delay,.doppler. shift and phase to

give height-differences-. will.not.:be:. considered. The

transmitter can be set.up-to.illuminate-the moon with.

either circularly or linearly polarized: radiation and the

radar return can be analyzed,.independent of- the polari-

173
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zation mode transmitted, into two linear components or

two circular components. Unfortunately most experimenters

have only measured that sense of polarization that would

be expected from a smooth sphere, the polarized component.

The polarized component has been observed over a wide

range of radar wavelengths, from 8.6mm to 12m. A

smaller subset of these contain data on the unexpected

or depolarized component as well.

1. Cross Section

Cross section measurements provide information on

the dielectric constant of the surface layers. The

dielectric constant follows from the cross section

derived using Fresnel's laws of reflection once proper

account is taken of undulations of the surface and the

amount of energy returned -in the-non-specular or diffuse

component. Hagfors (1967a) obtained a value of es = 2,64

(n
s
= 1.62) for his work at 23cm wavelength. (We shall

use the dielectric constant, c, and the index of refrac-

tion, n = £X/2, interchangably from now on so quantities

will sometimes be expressed in terms of both. Strictly

speaking this is only true of minerals with a small

amount of ionic polarizability.) The dielectric constants

obtained in this way at 3.8cm and 70cm are similar,
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Hagfors hasalso developed a more realistic depth

dependant model for the dielectric constant, thus

providing for power returned from some distance into the

surface as well. We shall neglect this refinement in

our calculations and derive only equivalent uniform layer

results.

The total cross section of the moon as measured by

Evans and Hagfors (1966) at 23cm in the polarized com-

ponent: for circular transmitted and received radiation

is at= (0.065 0.008)7R2.where R is the radius of the

moon.. This is the most accurate measurement to date

because the LCS, the Lincoln Calibration Sphere, a

polished metal sphere in earth orbit for absolute cali-

bration of the antenna, was employed. In this way they

were able to keep their errors to within- 1 db. Cross

sections obtained at-other wavelengths include two-way

calibration difficulties bringing the error; to at least

- 3 db.

The data show -very little if any change in the

total cross section in over 3 decades in wavelength, from

8.6mm to 12m. See figure 3.1. At the larger wavelengths

the cross section appears to increase-along with the

error bars, radar-systems being intrinsically less sensi-

tive at longer wavelengths. Some of the-uncertainty

here is -due to the exact placement of the subradar point



176

36

32

C- 28
-G)

0

00 .

0 0

0 T) 20
o0

L_ W
X .0' 1 6
0y2O

(n 0
0)0 -E6o ._

&I- &_. 00

00
o CL 1 2

4- o 8

4

.C

I " ! i * *Ti i 
I

1 

1 ... , I..1 I,. .I ,I ,, .. I

r-

10 100

Wavelength (cm)

OI

I I I I I

.1I
. 11

1000

Figure 3.1 The variation of the total cross section of the moon as a function

of radar wavelength. From Hagfors (1967a)

'rI " 1
I -- I I II1

I



177

(Burns, 1970), the cross section being higher at 12m in

maria regions. than in highland regions. Note that this

refers essentially-to the quasi-specular component and

says nothing about the diffuse component.

The diffuse component-of the radar cross section

is-of more interest to the present work, since it is

the diffuse component of the radar return we are

attempting to explain.- The diffuse- cross section is

obtained by extrapolating the diffuse component back-

wards to zero delay and subtracting out the quasi-

specular peak. The method of extrapolation is not

unambiguous, however, since it depends on the model of

the quasi-speculari component0 The diffuse cross

section has a significant wavelength dependence. The

data are given in Table 3.1 below taken from Hagfors (1967a).

TABLE 3.1

Diffuse Cross Section in Polarized Component

X(cm) % of power in diffuse diffuse cross section
polarized return assuming total cross

section = 0.065rR2

o.86 85 0.055
3.6 35 0.023

23. 25 0.016
68. 20 0.013
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Using other assumptions as to the character of the diffuse

component, Pettengill and Thompson (1968) have obtained

12% for their 70 cm results. Hagfors gives the wavelength

dependence of the diffuse component as:

a K 0.32 3.8cm < A < 23cm

x X-0 2 6 23. cm < A < 68 cm

The wavelength dependence of the diffuse cross section

can be derived quite easily if the diffuse component is

attributed to single scattering from wavelength sized rocks

lying on (and in) the lunar surface. This calculation has

been done with varying degrees of success by Hagfors (1967a),

Burns (1969), Thompson et al. (1970), and Zisk (1970). We

shall follow the development by Thompson et al. because

their work is more general and to some degree encompasses

the work of others.

We will find that if only single scattering is con-

sidered then the diffuse cross section varies as 35 where

s is the exponent of the power law distribution function

of rock sizes. Specifically, if nA(a) = noa
- , then

nA(a)da is the number of rocks per unit area between a and

a + da, where a is the radius of the rock. The cross

section per unit area due to these rocks

3.1 o() = i nA(a) Q ra2da
O ' 
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Q is the backscattering efficiency, and can be-approximated

via Mie theory for scattering from spherical objects in

free space. It is a functioniof a = 2--, the size parameter.

With the substitution of "a" for "a" the-integral becomes

wavelength independent and we get

3.2 a(X) 3- 5

Hagfors (1967a), Zisk (1970) and Burns (1969) have used a

cruder approximation for Q, though this is-easily seen to

have no effect on the wavelength dependence-for the very

special case of the power law. distribution- that is usually

used. Their different assumptions do however have a large

effect on the absolute value of the-cross section. This

will be discussed shortly.

The value of s derived from the wavelength-dependence

matches.quite nicely the value offs-observed.-in Surveyor

studies of rocks lying near the spacecraft (Surveyor

Project Final Report, 1968). This has been.used (Thompson

et-al., 1970) to argue in favor of single scattering from

rocks as the source of the diffuse- component. Unfortunately

multiple scattering requires modification of this simple

approach. The wavelength dependence will be- seen to be a

related to the simple scattering albedo of-the rocks as
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well as wavelength changes-in the index of refraction and

wavelength dependent crater parameters. The need for a

multiple scattering model will be discussed later.

The absolute value.of the diffuse cross section per

unit area is a source of serious concern for the multiple

scattering approach we shall take. It is not at all clear

that the entire diffuse cross section cannot be explained

by single scattering from surface rocks seen in Surveyor

photographs. There is however good evidence to believe

that the success of this calculation is fortuitous. Later,

after presenting some pertinent observations, we shall

discuss why it should not work.

Hagfors (1967a), using the cross section of the moon

as a whole to estimate rock cross sections, concluded that

the Surveyor rock counts were more than sufficient to

explain the observed cross section. His treatment has

been criticized by Thompson et al. (1970), who found

numerical errors in the derivation of the-rock density

function and conceptual errors in the approximation of

boulder cross sections. Burns (1969), using the approxi-

mation that the reflectivity was independent of size,

derives a cross section insufficient to match observations.

This assumption is in serious discord with Mie theory

results which show a rapid rise to. 5 or 10 times the
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geometric cross section. as.the.size- parameter, a X

becomes-greater than 1. This is followed by a first rapid,

then slow decline to the cross section of a large dielectric

sphere given by Fresnel's laws.. Zisk (1970) uses a more

realistic-approximation-for the variation of cross section

with a, but his results seriously overshoot the observed

values. A closer-approximation to-the Mie theory would

- .-lower his results. -Thompson et a-l....(1970),.however, have

used the Mie theory in conjunction with Surveyor rock

counts, and they derive a-smaller-eross section then

observed.

My results paralleling the.- calculations discussed above,

using the backscatter cross section from the Mie theory,

proves to be higher than observed values.. The actual

backscatter cross section of the.rocks is not known for

the rocks are not spherical as webhave assumed. The

actual cross sections may be smaller by 40%- (Greenberg et

al., 1971) or more. The "average" of all these calculations

appears -to show that Surveyor rock- counts alone are suf-

ficient to explain the.diffuse cross section. As we

discuss later, however, the rocks counted by the Surveyor

spacecraft seriously underestimate- the-.total number of

rocks lying on the lunar surface. Thus-none--of the above

calculations could be valid, and their-success is taccidental.
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Cross section calculations-by Thompson et al. (1970)

and Zisk (1970) using the different rock size distributions

at the Surveyor sites have shown that the-sense of the

observed radar enhancements in-these regions is obeyed.

We note, however, that from our point of view, enhanced

regions would contain more fresh craters which would

increase the amount of general debris in the-area. Thus

both our hypothesis and earlier hypotheses are able to

explain this observation.

Thompson et al. discuss a multiple scattering model

for the diffuse cross section. However they assume a

homogeneous model, whereas ours is inhomogeneous, allowing

for discrete scattering centers. The present calculations

will show that single scattering albedos small enough to

produce the observed cross section are far too small to

produce the observed depolarization. It was in fact this

calculation that led to the present inhomogeneous model.

Any model for the diffuse component of the radar

return must be consistent with the observed cross section

and the observed wavelength dependence, In addition it

should be able to explain Thompson's (1968) estimate that

the highlands are twice as bright as the maria in the

diffuse component.
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2. Delay Measurements

The radar return as a function of delay provides

information on the average-lunar scattering law since

the results average over a range ring. The angular

dependence-oft-the polarized and-depolarized cross

section per unit surface-area in rings,- ofconstant delay

is presented in figures-3.2 and 3.3 for 23cm, for circular

and linear polarization transmitted and received (Hagfors,

1967a). For the polarized data, the diffuse return

varies as cos3/2 for angles e between 250 and about 80°0,

where a transition to a cos e law takes-place. The

depolarized data may be approximated by cos e over a

wider range of angles. The above.statements; apply as well

to the 68cm data, although the 3.8cm data indicates a

greater tendency towards a cos e.dependence--(-Zisk, 1970).

The ratio of polarized to depolarized power in the

diffuse tail equals about 3dbfor -circular and 7db for

linear polarization. It is important-to note that for

circular polarization at least (where-the-dat.a is avail-

able) the ratio of polarized to depolarized power is

almost constant for 68cm, 23cm and 3.8cm; the difference
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Figure 3.2 Cross section per unit surface area at 23 cm for polarized and
depolarized circular returns vs cos e. From Hagfors (1967a).
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between 3.8cm and 6 8cm is only 0.75db.

A theory that attempts to explain the- diffuse return

must cope-with these results. In order to produce this

much depolarization Hagfor.s suggests,.as-a first approxi-

mation, that the scattering behavior is due-to randomly

oriented linear dipoles. By dividing the power between

dipole scatterers and scatterers that do-not depolarize

at all he finds that both the linear and circular depolari-

zation data lead to the conclusion..th-at.the linear dipoles

contribute about 70 percent of the observed diffuse power.

This consistancy check, while certainly a happy one, does

nothing to validate the model, since as Hagf.ors admits, the

model is somewhat naive.- Burns (1969) does a similar more

extended treatment of the same model, adding to it the

hypothesis, which we use as well, that the scatterers are

buried. This model too is ad hoc, for Burns fails to

deal with the question of what causes- the~-dipole-like

behavior of the scatterers. Burying the.rocks, however,

allows him to explain the angular behavior of the diffuse

component by Fresnel's lawso However Burns achieved a fit

3/2to the cos e law of the polarized component which con-

tains the effects of specular reflection, but did not fit
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the cos1 e0-law of the depolarized component which is more

characteristic of the diffusely scattered-radar return.

A similar treatment of the angular scattering law has been

achieved byZisk (1970).

3. Delay Doppler. Measurements

We come to a set of measurements which makes use of

the localization capabilities of the range-doppler tech-

niques. We gain the ability to define a local plane of

incidence and measure power polarized in and normal to this

plane. The data will be interpreted to imply that the

scattering takes place beneath the surface.

In one experiment the moon was illuminated by a

circularly polarized beam and linear polarization was

measured as a function of doppler position in the range

rings. The antenna was aligned so that one direction of

polarization coincided with the instantaneous position of

the libration axis, that is, parallel to the local plane

of incidence. The incident circular beam may be considered

as two linear beams of equal intensity with a physical

.delay in space of a quarter wavelength. If the relative

phase of the scattered wave is not-measured-the incident

circular produces the same effects as an unpolarized beam.
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Figure 3 .4 shows the results for four range ringso The

limbs are marked L and C marks the-points where the

curves for the two linears cross. Points C fall just at

these points on the disk-where both linears make an angle

of 450 with the local plane of incidence. This corresponds

to 0.707 times the maximum doppler shift at the limb. A

likely possibility, supported by other evidence we shall

present, is that this is due to the radar beam having

penetrated the top of the regolith, the difference in the

linear power being due to the effects of the Fresnel

transmission coefficients for the two orientations of the

electric field vectors (Hagfors, et al., 1965). The dif-

ference in the linear components is in the same sense as

predicted by Fresnel's laws. Note the anomalous peak in

the second graph near +4cps doppler- frequency. This is

the crater Tycho, a large rayed crater and one of the

youngest large features on the moon.

The fact that the difference in the--llinears dis-

appears near Tycho seems to indicate that the scattering

is occurring at or near the surface in this region (Hagfors,

1965). Another possibility, however, is that the consid-

erable variability of the local plane of incidence in the

crater walls and chaotic crater floor averages over both
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linear components. We shall return to this point in

section VIII.

To further illustrate that the diffuse scattering

occurs within the lunar regolith consider figures 3.5 for

23 and 3.8cm. The experimental setup is the same as for

the previous experiment but the data is presented as a

power ratio for the region along the libration axis as a

function of cos e. Thus one linear has its electric vector

always parallel to the local plane of incidence. Hagfors

assumed that the buried scatterers return power in the

same linear mode as was transmitted. He thus was able to

derive an index of refraction because the ratio of the

power returned to the two linear modes is then equal to

the square of the Fresnel transmission coefficients. His

result, assuming a constant index of refraction, is

n s 1,3 at 23 cm, which is lower than the value of n s 1.6

derived from cross section data, although it fits rather

well with the value derived from radiometric observations

of the polarization of thermal emission from the lunar

surface (Hagfors, 1967a). A much smaller value of ns is

indicated for the 3.8cm data. Hagfors states that it is

possible to reconcile the two radar values of n
s

by postu-

lating a two layer model. We will find instead that
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Figure 3.5 Ratio of backscattered power at 23 cm and 3.8 cm in two orthogonal

linearly polarized components from a small region of the lunar surface for

circularly polarized illumination. From Hagfors (1967a).
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n
s

= 1.6 is consistent with our calculations since the

averaging of the local planes-of incidence-within fresh

craters and the depolarization within the surface requires

us to increase the index of refraction of the-dust to get

the same angular dependence.

Another significant but unexplained. observation is

shown in figure 3.6. The small square data points

represent the ratio of polarized to depolarized power in

two linear modes from the libration axis for linear

polarization incident parallel to the libration axis and

in the local plane of incidence, The triangular points

are the experimental results for averaging-over all points

in a range ring at the same value of 0. That experiment

was described above. There appears to be a real increase

in the depolarization ratio, although the scatter in the

data points is greater. We shall find that this phenomena

is explained by Fresnel's laws when combined with the

multiple scattering reflection matrix, and gives further

evidence of the subsurface nature of the scattering

process.

The phenomena apparent in the delay doppler measure-

ments can have an alternate explanation. The same differ-

ences in the linear components could result from a

preferential orientation of the scattering centers such
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Figure 3.6 Ratio of backscattered power at 23 cm in two orthogonal linearly

polarized components for linearly polarized illumination with polarization

parallel to plane of incidence. Dashed curve shows depolarization when

polarization of illumination is averaged over all angles for the same data.

From Hagfors (1967a).
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that their long axes are- vertical, as was suggested by

Hagfors (1967a). We reject such- a situation as being

inherently unstable.

4. Discrete Model vs. Homogeneous Model

Most previous discussions of the diffuse component

have shared the basic assumption that only single scattering

need be considered. The explanation given is that the

rocks are so widely scattered that absorption between

scattering events in the regolith reduces-the single

scattering albedo to.a point where multiple scattering can

be neglected. This argument, however, depends on the

tacit assumption that on the average each small area of

the moon contributes as much as any other. This leads to

the slightly more explicit assumption that the rocks

counted in all the Surveyor missions are representative

of large areas of the moon and, with a certain amount of

care, of the moon as a whole. Thus the Surveyor rocks,

or similarly distributed rocks beneath the surface, are

taken as the source of the diffuse component.

Pollack (personal communication) has shown otherwise,

and we take his argument, given below, as motivation for

the discrete source, multiple scattering approach. We
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use the data of Moore (1969), who made boulder and crater

counts from lunar orbiter photographs.

Fresh craters are seen to possess large numbers of

rocks and boulders in their interiors and for a distance

of 2 or 3 crater radii outwards into the ejecta blanket.

Data is given for the fraction of the area covered by

boulders larger than a certain size in annuli one crater

radius wide out to 5 or 6 radii. Fresh craters occupy

about 1% of the lunar surface, so circles 10 crater radii

large centered on fresh craters will approximately cover

the entire surface of the moon. If we -extrapolate Moore';s

data to 10 radii outwards we find a very interesting

result. We find that there is about 8 times as many

rocks from 0 to 3-radii as there are from 3--to 10 radii;

or, put another way, there are about 10 times as many

rocks in 10% of the lunar-surface than in the-other 90%.

Thus the data from all the Surveyors are basically useless

in determining absolute cross sections or deciding the

question of single scatterings vs. multiple--scattering,

though the exponent of the distribution functions may be

significant. Using data from fresh craters-we will find

that single scattering albedos greater than 80% are

plausible and thus that multiple scattering is-important.
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We do the calculation of single scattering albedo in

Section IX, making use of the complex index of refraction

of lunar rocks and dust brought back by Apollos 11 and 12.

The skeptical reader is encouraged to skip ahead to Section

IX to allay any doubts that such high values are realistic.

The multiple scattering in the crater and ejecta

blanket would tend to enhance the difference between the

crater and the background even further. Depolarized

enhancements of more than a factor of 10 are common for

many-of the larger young craters at70- cm -wavelength

(Thompson et al., 1970). Zisk (1970), working at 3.8 cm,

also finds significant enhancement around fresh craters

which he is able to resolve far better than other workers

at longer wavelengths. Some of his remarks follow:

"Most craters that are 'fresh' in geo-
logical appearance-show a well-developed
halo (of ejecta?) in the depolarized
maps. In some cases, the halo is strong
enough to obscure on the depolarized map
other features that are clear on the
polarized map. There also appear on the
depolarized map, and even more distinctly
on the ratio map, a number of bright
patches -- perhaps as many as 1000 on
the earthside hemisphere -- with diffuse
outlines but no obvious central crater.
In all these cases the Lunar Orbiter photo-
graphs show a bright, fresh crater or
clump of craters at the center of the
bright patch, although some of the craters
may be only a fraction of a percent of
the diameter of the patch."



III THE DIFFERENCE:BETWEEN THE...SINGLE-SCATTERING MODEL
AND REALITY AND ITS INFLUENCE ON THE MULTIPLE
SCATTERING RESULTS

The multiple scattering results.we derive in later

sections are predicated of course on how we choose to

describe the single scattering from a rock or group of

rocks. At opposite ends of the range.of models we can

either assume the scatterers are randomly oriented linear

dipoles or perfectly spherical dielectric spheres. Clearly,

neither model is the correct one and-rocks having random

shapes fall somewhere in between. Unfortunately,

scattering theory for randomly oriented,.-randomly shaped

particles is not developed at all.and we.must make do

with the Mie theory, which has been fully developed only

for spheres and infinite cylinders. The.-applicability of

Mie theory to the real situation is discussed below.

The approximation of lunar rocks by dielectric

spheres is at first sight a severe one,.though certainly

much less severe than the approximation by linear dipoles.

In evaluating the effect-of this approximation on our

final results two aspects must be-considered, intensity

and polarization.

No one non-spherical object will have the same

intensity phase function as any one. sphere.-chosen to be

197
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most equivalent, due to the detailed dependence of the

phase function on phase-reinforcements and cancellations

inside, at the boundaries and outside the object. The

phase function of any particle which is wavelength-sized

or larger shows many ripples in the intensity as a

function of scattering angle, the number of ripples being

approximately equal to the value of the size parameter

a = a, where a is the -particle-radius and X the.wave-

length. It is only by averaging over many different

sized particles that a smooth-phase function-is obtained.

For non-spherical particles we.also. expect a smooth phase

function, although the detailed shape may.be different

from a set of spherical particles.-of equivalent size

distribution. The ability of spherical particles to

mimic the phase function of non-spherical particles

depends on their departure from.sphericity. Specially

filled angular particles are found to.do a reasonable job

(Hodkinson, 1963), while fourlings (objects like the jacks

children pay with) of the same index of refraction, are

found to not work very well at all (Donn and Powell, 1963).

We may expect that convex objects work better than concave

objects. Lunar rocks are mostly convex, so we are helped

in this respect.
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With respect to multiple scattering we are in a

much better position in.using.the, intensity phase

function of spheres. It has been- shown (Van de Hulst

and Grossman, 1968) that through the use-of similarity

relations, multiplescattering,..from. particles with

different sizes may be related -by appropriate scaling of

the single scattering albedo,60,.and the: value <cos e>

of cos e averaged over the phase functione. Thus even

though the detailed form of the phase function is

different, the multiple scattering is similar for phase

functions with the same 30 and <cos e>. If we now make

the more'reasonable assumption that ~o and <cos 9> for

lunar rocks are similar to that derived.for spheres of

the same size, then we may expect-the multiple scattering

intensity results to be a valid representation of the real

situation.

We are not so fortunate in the case of po'larization.

The scattering matrix for spherical particles has only 6

non-zero elements, 4 of them independent'. Lunar rocks will

be described by a matrix with 16 non-zero elements, all of

them independent. The additional elements result from

the total lack of symmetry expected for real rocks.

There is no theory to describe these:additional elements,
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nor any experiments that have measured them except in very

special cases such as backscattering or scattering from

well defined geometrical metallic objects. We can only

hope that effects due to non-sphericity will be super-

imposed on the results we get for spherical objects and

that they will be of magnitude and direction such as to

not invalidate the results. Certainly we do expect depol-

arization by single scattering alone due to the non-

symmetric quality of the scatterers. This effect is

absent for spheres in the case of direct backscattering

since we then have a perfectly symmetrical situation,

Although we must admit virtual failure in calculating

the full single scattering.polarization matrix, this does

not obviate-the results in any way. This suprising

statement comes from a comparison of single scattering

polarizations of initially unpolarized radiation with

multiple scattering depolarizations of initially fully

polarized radiation. Figure 3.9 shows percent polari-

zation of some of the phase functions used with the

index of refraction of the rock relative to the dust,

as a parameter. The maximum polarization varies from a

maximum of 60% to a minimum of 7% for different phase

functions. Yet there is only a small difference in the
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multiple scattering depolarization (see figure 3.7) and the

differences are correlated one to one with the backscatter

cross section (see figure 3.8) and not the single scattering

polarization (see figure 3.9). Figure 3.7 gives the ratio

of polarized to depolarized power returned in range rings

for circular and linear polarized power transmitted and

received. The backscatter cross section-is evident in

Figure 3.8 as the backscattering peak-in the plot of the

single scattering intensity phase function.

This argument implies that the depolarization results

from the randomization in direction of the incident beam.

As we have argued above, we calculate the randomization

in direction correctly. We also argue that we have

calculated the backscatter cross section correctly be-

cause it correlates fairly well with the reflectivity of

a dielectric surface given by Fresnel's laws for ray

optics. We expect non-spherical rocks to-follow Fresnel's

laws so we expect that the backscatter cross-sections we

calculate-will be similar to those-of the actual rocks..



IV SINGLE SCATTERING.- CALCULATIONS

Below we develop.the. single scattering phase function

and albedo for a. collection. of absorbin.g.particles in-

bedded in an absorbing. medium. - We.assume that the bulk

of the scattering comes from rocks:buriedt-beneath the

surface of a. layer of dust of uniform index of-:refraction,

ns. The rocks have an index of refraction relative to

the dust of nr = nr inn
i

in terms of the real and imaginary

parts of the index of refraction.. The imaginary part, ni,

is unaffected by ns since the absorption per unit length

in the rock is dependent on n
i
along, independent of nr

and hence ns

3.3 n~i 7-TfT- where a is the absorption length.

We assume the dust to be. absorbing, the functional

dependence of the absorption length. with wavelength being

given approximately by ta = loX (Cambell and Ulrichs, 1969).

ea may be proportional to a slightly higher power of X then 1,

but we shall ignore this possible difference to decrease

the number of parameters. It is not an important effect.

Lastly we take for our distribution of sizes the law

3.4 nV(a) = noas

205



206

The number of rocks per unit volume with a radius between

a and a + da is nv(a)da. Having specified nV(a), nr, £a

and X, the single scattering phase function albedo, etc.

are completely determined.

In developing the simple scattering.phase functions

that were. used throughout this work, a computer program

written by J. V. Dave (communicated through I.B.M.) was

used to provide the mie scattering information for single

spheres. The only inputs necessary.for this program are

the index of refraction nr and the size parameter a.

Briefly, the program obtains the far field scattered rays

by matching boundary conditions in the interior, on the

surface, and at infinity for the incident, internal and

scattered rays.

In terms of the mie scattering phase functions p , p ,

p , p and the scattering and extinction efficiency factors
3 4

Qs and Qx for single particles we can derive the results

for a polydispersion of particle sizes as follows: The

unnormalized phase functions are, for i = 1,4

3.5 Pi = Pi(a; e, X) nv(a)da
t!

The phase functions Pi are normalized to a single scattering

albedo of 1 such that they satisfy.the equation
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3.6 1=I f (8i(e) + P2(e)) sin Odedp
3.6 1~t;;illP:(8F = 2-~

0 0

where sin ededp is a differential solid angle. The single

scattering albedo, neglecting absorption in the dust,'is

o Qs (a; X) 7ra2nv(a)da
3.7 o 2

Qx (a;x)ra2 nv(a)da

Note that P1 and wo are not functions of X, only in the

very special case of a power law distribution of particle

sizes of the form we have chosen. This is true because

we may remove X from the above integral and change the

integration variable from "a" to "a".

The single scattering albedo wo is only a function of

nr and s, the exponent of the power law distribution. The

absolute value of number density of particles given by the

coefficient no is nowhere included since so far we have

assumed that there is-no absorption between particles and

hence their relative packing is irrelevant, assuming point

particles. With the introduction of absorption between

scattering events the single scattering albedo becomes

00

3.8 Qs5(a; 2) raznv(a)da

oQx(a; ) ra2nv(a)da + 1/£oX
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It is worthwhile to note that now 1o is also a function

of no and X, the dependence being given by

nA s
3.9 o =

noBX 
s
+ C

Since So now depends on many parameters, we have chosen

instead to parameterize our results in terms of arbitrary

choice of 30. We show in the section IX that while the

choices of Jo used are arbitrary, they are by no means

unrealistic. Thus the phase functions Pi used in the

first chapter of the thesis are normalized such that

27T 1

3.10 O f (Ple) + P2(i) sin Odede
0 o

We take Pi as the starting point in the polarization doubling

program.



V SCATTERING MATRIX FOR_.BURIED ROCKS

In the previous section we described the transition

from single scattering on single spheres to single

scattering on many spheres. We obtained the phase functions

Pi necessary as input to the polarization doubling program.

With the computer program-:developed in Part. I in hand, we

obtain the scattering matrix S (p ,'uo, %o-c), defined

in Part I in terms of the Stokes vector I = (I1, Ir' U, V)

where (io., %) and (p,.. ) refer to directions of incidence

and emergence respectively. With this as our starting

point we will adapt S, in.this..and subsequent sections, to

our-model of the lunar surface. In this section we shall

derive.the scattering matrix-for scatterers imbedded within

aimedium.with index of refraction n .. .We-discuss the form'

of S for our special case-and derive the-transmission

matrixes-from Fresnel's-laws-:of-reflection.

We first examine the scattering.matrix we shall be
*E I

working with. We use the variable p = cose0 to remind

us that we have described scattering inside-the layer, the

variable p = cos e being reserved now. for radiation outside

the layer. We no longer need the scattering-process to be

defined for all angles p , io, Oo and - $ since-we are only

interested in-backscattering. In- this case- = po and

209
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- -= 1800, and we may speak in terms of the restricted

matrix S (i ) only. It is an almost diagonal matrix, the

only non-diagonal elements lying in the 12 and 21 positions

when the Stokes intensity is written [Il, Ir, U, V]. See

Part I of the thesis where these quantities and S are

described in detail. The notation is basically the same

as that used in Chandrasekhar's (1960) book on radiative

transfer (see, e.g., pp. 24-42). Eight of the sixteen

elements are zero because they are odd functions of $ and

since -180° and +180° are equivalent values of $, the

values of the functions there must be zero. This does not

explain why the elements 34 and 43 are zero however, since

they are even functions of $.

The nullness of these elements is apparent from the

following "Gedanken Experimente" due to Hagfors (1967b),

We expect that if the surface is illuminated with

either right or left handed circularly polarized light the

excess of one linear component over another will be the

same in both cases. The incident ray then is. I = [1, 1, 0,

-/2] in the [I1, Ir, U, VI representation we have been

using. Then taking into account the zero terms already

mentioned we have for the two polarizations

U ~ S3 4 = -S3 43.11



211

where-U is.the excess- of the two.linears.-on axes 45° to

the-normal axes. ,Thus S = 0 and.. = 0-by symmetry.'
34 3

Matrix S (VA) is now of the form

S. S O O0
|1 12

S S O O0
= 21 223.12 S 0 S 

33
0 0 0 S

We wish to combine.S..with Fresnel's Laws. of trahs-

mission and reflection for a layer-of dust with index of

refraction ns. In deriving the-transmission coefficients

explicit.account must.be taken.of the change in the solid

angle.of..the beam as it enters and..leaves the medium. This

is usually not done. Transmission coefficients derived in

most optics..texts. are.applied.to.the magnitude of the

electric field squared which is not. strictly a measure of

the intensity as we have been using it. The definition of

intensity here., which is more properly called the specific

1 The zeroness of S is an important check-on computational
34

accuracy. Each Fourier coefficient is.non-zero in this
element. -It.is only the sum of all the- Fourier coefficients
that produces the null value...-This-is.the. only a priori
known quantity in all the computations and can serve as a
check on the choice of all the internal parameters needed
to actually run the polarization doubling program on the
computer.
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intensity, is a measure of.the energy passing through a

surface per unit time per.unit solid..angle.. The question

for our purposes is perhaps academic because the product

of the transmission coefficients.in and out of the layer

is the same for both-derivations, although the actual

transmission coefficients differ from those usually seen by

factors of ns

Let e and e be, respectively, the angles of incidence

and refraction that the radiation makes-with the surface

normal as it enters the dust from space. We derive the

transmission coefficient from the reflection coefficient

by writing the equation for conservation of energy across

the interface, taking explicit account of the change in

solid angle of the radiation.

3.13 Ir cos 6 dw + It cos d = icos e d

where r,t, i refer to reflected, ..transmitted, and incident

respectively and dw and dw are the differential solid angle

occupied by the beam outside and inside the layer.

3.14 R cos 0 sin Ode + T cos 0 sin e do = cos 0 sin 0 de

Now,

n sin 0 = sin 03.15
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by Snell's law, where we have dropped the subscript s from

n for the remainder of the derivation. Differentiating

3.15 and substituting:in equation 3.14 we find

3.16 T = n2 (1-R)

The usual Fresnel reflection coefficients as a function of

the angle of incidence: for polarized. parallel and perpen-

dicular to the reridian plane of incidence are

2

n 2 cos e - An2 _ sin2.e

n 2 cos a + /n2 - sin2e

3.17 2

cos 0 + n2 - sin2 8Rr j cos ( - n

2

- sin20

where 1 and r refer to the.last letter of parallel and

perpendicular. Then we get from 3.16 and 3.17

i 4n4 cos 0 +n 2 - sin2 e

(n 2 cos 0 + /n2- sin2 ) 2

3.18

T 4n2 cos e n 2 - sin20
r

(cos a + n 2 - sin 2
e ) 2
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The superscript i refers to transmission.into the layer.

i i
The two coefficients T and T describe the1 r

transformation of the two Stokes parameters I1 and I
r
as

the radiation enters the medium. We derive the transformation

of the Stokes parameters U and V from their definitions in

equation 1l2. If we take note of the tacit assumption

which we have been making in the derivation of the trans-

mission coefficients, that the imaginary part of the index

of refraction is zero, no phase changes are introduced across

the boundary, The derivation then is straightforward,

The definitions of [I1, Ir, U, V] in equation 1.2

yield

2 2
t t 0o o

I E = E T I
I1 = T1 1 1 T I1

2 2
t t 0o o
I =E T E T Ir r r r r r

U19 = 2Re (Er E1 ) = (T
r

T 1
)

UO

t 2 (t t*
V = 2 Im (Er E

1
) = (Tr T

1
) 2 V

0

Superscripts t and o refer to the transmitted and

originally incident rays respectively, * means complex con-

jugate and E is the electric field strength. The superscript

i on T was suppressed. These results show that
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3.20 T i = T T T)u v 1 r

and the transmission matrix for.the..four stokes parameters

is a diagonal matrix which we shall call T (e).

The transmission matrix for radiation leaving the

medium, To (8), is derived from Ti (0) by inverting the

index of refraction writing 0 for e in equation 3.18 and

using Snell's.law to re-express 8. as 0. The result is

3.21 To = Ti/n4

The final.step.in deriving the scattering matrix of

buried scatterers, B, is to combine the- transmission and

scattering matrices.

3.22 B.(0) = To (8) S (e) T (0)

We mean by.S (e) that we have changed-the-. dependent variable

from. -..to e so that . (e) is related..to.S (0.), the result

of the doubling program,.through Snells.law,. This required

interpolation of values in .the computer program. The form

of B is the same as that of.S.given.by equation 3.13 since

both transmission. matrices..are diagonal.



VI SCATTERING MATRIX FOR A CRATER

The model for radar scattering in the lunar surface

has begun to take shape. Already in the modeling we have

accounted for the subsurface nature of the scattering pro-

cess. But up to this point there has been no need to de-

cide whether the scattering is occuring in discrete loc-

ations or quasi-uniformly over the entire surface. In

the development of the model the choice was made for uso

It was found, contrary to expectations, that a very

high single scattering albedo, 2O > 0.7, was needed to

match the ratio of polarized to depolarized return power.

This would give a radar cross section 2 orders of magnitude

higher than what is observed. The need for discrete sources

is immediately apparent, and the areas in and around fresh

young craters a logical choice.

In this section we shall obtain the scattering matrix

of the crater. To do this we discuss the meaning and use

of B in greater detail and show how to integrate it over

the surface of a crater. We require a matrix C which des-

cribes the scattering from a crater occupying the same area

element that matrix B is referred to. We must take account

not only of the ano.e that the radar beam makes with the

local crater normal, but also of the angle that the aver-

age local lunar meridian 1 plane of incidence makes with

216
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the local meridiano.l plane of incidence inside-the crater.

These are the basic points involved in the integration over

the crater. The derivation is as follows.

In order to do the crater integration we must first

understand the. physical meaning of B and C. The diffuse

intensity scattered by an area element dA back towards the

observer from the buried scatterers is

3.19 I = B.F

where F is the incident flux and p is the cosine of the

angle that the direction of propagation makes with the

local normal. The energy that is observed from this area

element is-proportional to the intensity, I, and the pro-

jection of the area onto the plane normal-to the line of

sight, idA. Thus the energy returned from a randomly

oriented.surface element dA.is proportional to BdA and

it is this quantity we wish to integrate over the crater.

In an equivalent manner, we-define the crater scattering

matrix C such that the energy coming from the crater as

a whole is proportional to CAo, where Ao is the area of

the-smooth lunar surface removed by the crater.

Before we write down the form of the integral for C

we must more completely understand how to make proper use

of B. These considerations would be absent if we- were dis-

cussing intensity only. The scattering matrix B is express-
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ed in terms of a local coordinate.system defined by directions

parallel and-perpendicular.to the:local meridian plane of in-

cidence and emergence, that is, the plane (or planes) defined

by the direction(s) of propagation and the local normal to

the surface. We want to refer each scattering element in the

crater to the local meridianplane.of the craterless surface.

We must therefore rotate the coordinate system-fixed on the

lunar surface into the coordinate system of the crater scat-

tering element and, the scattering having.'been completed,

rotate it back-again to the craterless surface coordinate

system. If Q is the angle in the plane transverse to the

direction of propagation that the meridianol plane of the

crater element makes with the.meridian plane:of the crater-

less lunar surface element then the scattering matrix of

an infinitesimal portion of the crater is, in average lunar

surface coordinates, L(-2).B-L(Q) where L is the rotation

matrix of equation 1.9.

We may now write down the form of the.integral for C,

3. '20 C(p) = - L(-_Q) B(n ) L(Q) dA
Ao

where i is the cosine of the angle that the-local crater

normal makes with the line of sight.

The integral for C is quite general for any crater

shape. What remains is to discuss Q, r , dA and the integra-

tion limits for a particular model.
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We assume that the crater is parabolic with a diameter

to depth ratio of 4 following Moore (1969). This is approx-

imately true for small fresh craters, but fails to hold in-

creasingly as-flat bottomed floors develop in larger craters.

The crater has a depth h and a diameter d. If x and y are

measured along orthogonal directions on the flat lunar sur-

face and z is positive upwards,.then the equation of the

paraboloid is

3.21 f(x,y,z) = z - ax2 - ay2 = 0

where a = 4h/d2 .

To express n, 2 and dA in terms of the variables x

and y, consider the unit vector ni parallel to the local

normal to the surface of the paraboloid.

3.22 Vf -2ax-l - 2ayJ + k3.22 n =- =-
TVfl /4aJxL + 4a'y + 1

where 1, J, k are unit vectors in the x, y, z directions

respectively. Assume the radar beam is incident in the

x-z plane. The direction of propagation is parallel to

the unit vector 1 given by

3.23 '1 = sine i + cose k

where G is the- angle-between the normal to the x-z plane

and 1l. Note that cose = W, the variable used previously.

The cosine of the angle between the local normal to the

surface and the direction of the beam is
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3 .2L4 = l'n = -2axsine + cos8
I/4ax2 + 4a'y' + 1

The area element dA is.the real area on the surface

of the paraboloid above the area element dxdy in the x-y

plane. Usingunit vector n normal to the crater surface,

and unit vector k normal to the x-y plane we have

3.25 dA = dxdy =-4a7x + 4aj y + 1 dxdy
n k

The derivation of Q requires a bit more thought. Q

is the angle that the projection of n and the projection

of k make-in-the plane normalto 1, Noting the form of the

vector 1, the direction of propagation, we may write down

immediately two mutually orthogonal vectors L1 and L2 which

define the transverse plane L.

Li = cose i - sine k
3.26

L2 =

The sum of the projections of n and k on L1 and L2

determines the projected vectors. The projected vectors

are then

3.27 n + N = (2axcose + sine ) .L + 2ay L 2

/4a'x2 + 4a'yL + 1

k f K = -sine Lt

We find Q by the vector theorem
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cos= N 

After a little algebra the equation for Q becomes

3.28 .. = tan 2ay
(2axcose + sine )

Note that Q is an odd-function of y. Because the beam is

incident in the x-z plane the crater is symmetric about this

plane. -Thus for.every-point (x,y) there is -a-pint (x,-y),

and for every. 2 there is a -Q. In the computations there-

fore-all odd functions of 2 will be zero and can be discard-

ed.before the-integration begins.

The integration limits remain. .We.will not derive

them here as it is a question%-of simpler-though tedious

analytic geometry-. With the inclusion of the-integration

limits the equation for the.erat.er-scattering matrix is

m-Aha
a q(x) m/2a q(x)

.3.29 ()= + L(- B ( L(.B)
-h/a J - h-aI g(x)

a

*V4a'xL + 4a-y2 + 1 dxdy

where

g(x 'h x- xg(x) - _x, xq(x) = --x

and m = cot6, and r (x,y) and Q(x,y) are given by equations

3.24 and 3.28.

The integration was performed numerically using Gauss-
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ian quadrature in the variables x and y. Unfortunately

using x and y as Gaussian points in variable intervals

meant that n(x,y) did not.necessarily. coincide with the

points at which matrix B was.known° Consequently the value

of the functions at each integration point was determined

by fitting a parabola to the three--nearest points. We can

write the formula for this-interpolation in a very compact

form, since.it is a special case of the Lagrange interpol-

ation formula. If the function f(p) is known at 3 points

pii, 12, 1-3 surrounding the desired point n, then

3 3

3.30 f(T) = f(Vi) X T
i=i j=i (pi Pi)

This formula has been used extensively throughout much of

this work, although we explicitly.mention its use only here.

To conclude this section on the integration of the

scattering matrix over the crater we-discuss below the form

of the matrix product C' _ L(- )-B.L(Q) and hence the form of

the equivalent crater scattering function C. Combining eq-

uation 3o12 for S and equation lo9 for L and neglecting all

odd functions of Q we get the components of the matrix

product. The non-zero elements are the-same- as those for

S given in equation 3.12 and the components are, explicitly
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C{1 = B 1cos4Q+(BI 2+B2 1)sin2 Qcos2?+B 2 2 sinQ+.Bs3 sin2Bsin22

C12 = B22cos4Q+(B12+B2 1)sin2cos2Q+Bllsin4Q+B33sin22Q

3.31 C11 = B2cos4Q+(B11+B22)sin2Qcos 2+B12sin-4Q-B33sin22Q

C½3 = B33cos2 2Q+.(Bll+B2 2-B1 2-B2 1)sin2 2Q

C12 = CIl

C44 = B 4 4

We note in passing:.that if the crater is asymmetrical

with respect to the meridianol plane of the line of sight,

then the form of:C is changed-from a non-zero 2x2 matrix

situated-on the upper diagonal to a 3x3 matrix on the diago-

nal.



VII THE MATRIX ELEMENTS AND.THE- RADAR EXPERIMENTS

We are-now capable of relating scattering matrices

B and C to most of the observations that can be made from

the earth. The only exception.is that we cannot give

absolute cross sections since we have not as yet accounted

for the distribution of craters across the lunar surface.

We will do this in section X. We here discuss the relation

between the matrix elements we have derived and the radar

experiments themselves. The- comparisons between calculated

and observed values will be discussed in the next section.

Some of the discussion given here parallels in part a

paper by Hagfors (1967b), but was independently arrived ato

We shall be discussing the matrix elements of a new

matrix M which combines the scattering properties of the

crater and ejecta blanket through the equation

(1-Fc
)

3.32 M = C + F 
c

where F
c

is the- fraction of the total power returned from

the crater. For want of a very detailed description of the

average fresh crater, we also take F
c

to be the fraction of

the-area-of the crater and its ejecta blanket occupied by

the crater,

224
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There-are----five- indepen:dent-:matrix elements. Therefore

five.-independent-experiments':' are-required...to measure them.

They- fall into two catagories'--.-measurements--averaged over

a range annulus-and localized 'measurements of small area

elements- requiring'the full power- of--the range-doppler

technique (or -other-methods.:.- ~We-.discuss. b.elow.the averaging

of M over:an annulus. M-is sometimes referred to as the

Mueller matrix, although strictly-speaking we should reserve

the term- for-the properly-normalized matrix.

Define, to be the-angle,-in-the plane transverse to

the-direction-of propagation that- the- vector-parallel to the

local meridianol.plane-of incidence-makes.with. an arbitrary

direction., -the direction'of:.the--libration axis for example.

Then.with the considerations'of the previous. section as to

the meaning and use-of the scattering'matrix-we may write

down that..the scattered-Stokes:-intensity at any point is

·= 1
3.33 IS= ByL (-¢)*M -(L () I

The scattering.matrix for the entire-annulus-is.-then propor-

tional to Ma where

27r

3 34 Ma. 1 L (_$)MoL(f) dS
GO

and.the-. result is,-once again, an-almost. diagonal matrix
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whose elements are:

M a = Ma22 = (3M1ll + M 12 + M21 + 3M2 2 + 4M 3 3 )

a a 1
= 2 1 = ( M11 + 3M+2 + 3M2 1 + M22 - 4M 3 3 )

I3 e35 M33= (2M1 - 2M1 2 - 2M21 + 2M2 2 + 8M3 3 )

Ma4 = M44

and Ma = M - M12

This matrix, however, is different from previous matrices

in that in the [I, Q, U, VI representation it is diagonal, with

M22 M33 as expected from the quite similar physical meanings

of Q and U. (Q and U it will be remembered are- the differences

in the linear polarizations in two orthogonal. coordinate systems

making an.angle of 450 with each other.) The equations to

follow would be slightly more compact if written in this

representation, but we will avoid this to reduce the incidence

of new notation.

The averaged Mueller matrix, Ma, is examinable by two

experiments. In the first, circularly polarized power is

incident and both right and left circulars are received, The
1 1

incident intensity is [2, 2, 0, 11 in the [I1, Ir, U, V]

representation. The ratio of polarized to depolarized power,
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r , can be written-down immediately if we remember that V is

the excess of-right-;handed over.left-handed circular polarized

power.

I + Vr =
c I - V

3.36 r = Ma + Ma + 2Ma
r =Ml 12 + 2M4u
c Ma + Ma - 2M~

In another conceptually similar, although physically

more.difficult experimenct. (due-to Fareday rotation in the

Earth's ionosphe.re.)-a-linearly.polarized.beam, [1, 0, 0, 01, 0],

is used to illuminate the moon and:both linears are received,

The ratio of polarize-d:to depolarized power, rl, is

I1 I + Q

3.37 a
r = 

1 M2a

Implicit in the- two equations is the total power received

per-unit area, a, which is given by the proportionality

3.38 a(p11) Ml, + M2a

For the second.of the'-two categories. of experiments we

use the, unaveraged-4Mueller:-matrix,.-M, to describe scattering
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from local areas. In-one expe-riment circular polarization is

incident and.the-two linears are received from the libration

axis (or any other suitable axis), the antenna polarization

oriented parallel to this axis-. The ratio of the power in the

linear polarizations, rcl, is

3.39 _ M1 , + M12
cl M22 + M21

Note that this ratio is equal to unity for the data

averaged. over an annuluso

The last of these experiments measures the depolariza-

tion of linear incident' power. The incident radiation is

linearly polarized parallel to the-libration axis and the

state of linear. polarization of. the_ returned power is measured.

The ratio.of.the-two linears, rll, is given by,

3040 r M11 M21

From the point of view.of the-experimentalist,

equations .336 to 3.40 are five equations. in five unknowns for

the determination of the Mueller matrix elements. That they

are independent is not immediately clear from the form we have

written them in. If we were to write them in matrix form,

the uniqueness of the solution-would'become immediately obvious.

To save space we will not pursue:this matter any further.



VIII .THE ANGULAR. VARIABLES-OBSERVATIONS.,AND ..CALCULATIONS
COMPARED

We come now to the firstof.the results. We shall

present in this section, mostly in graphical form, a par-

ameterization of the end product..of. the. computer calcula-

tions and comparisons with observations. The variables

rc, rl, rcl, r1 l, and.a(p) defined in section VII will

be discussed. We shall see the- degree-to which a consist-

ent and physically.reasonable set.of parameter values is

able to match the observations,. Unfortunately, since there

are-many more variables than there -are-knowns,-the choice

will not be unique. The. usefulness. of.our results will

lie in their ability.to.explain differences from the

average lunar scattering behavior, The section ends.with

a discussion of the applicability of this model to Mars

and Venus. We reserve-till section X.the discussion of

absolute cross sections.

There are two types.of.parameters involved here. The

first set are those that-were-given as input to the compu-

ter program and whose effects we:will examine:below. They

will be varied independently. The-second set includes the.

first but shows more clearly the interdependence of the

parameters. The parameters that-we vary are.ns, nr, wO,

Fc, s and T. The more complete set includes no, lt A, ni

as well as ~o(no,t a,n,ni,nr,S) We take a-detailed looka 1rs)

229



230

at Jo in section IX. The definitions of these quantities

have been given before, but will be.repeated here: ns_

index of refraction of surface layer; nr E index of re-

fraction of rock relative to ns; wo w single scattering

albedo; Fc E fraction of crater and its ejecta blanket

covered by crater; s E exponent of power law distribution

of rock sizes; T E optical depth of scattering layer; no

coefficient of power law distribution; ta E absorption

length in the dust; n.i imaginary part of the index of

refraction of the rocks.

The non-uniqueness of the solution means that one

choice of parameters to fit the-observations may do quite

as well as another. Yet we are forced to make a choice

-because the-large number of parameters-to be-investigated

makes-it impractable to display or calculate the whole hyper-

space of solutions. Therefore-we-have selected a "good"

set of values that make a reasonable fit to the obser-

vations and.we-display the result of varying each para-

meter independently while the other parameters are kept

constant. The "good" parameter values are then the origin

or "zero point" of a coordinate system and we shall invest-

igate-the results along axes centered at this point.

An exception to investigating conditions along these

axes is our decision to display much of-the results with-

C"'
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out the addition of crater scattering.. We,..do this because

the crater destroys much angular- dependence- that might be

of interest at some later date in connection with boulder

fields unrelated to craters.

The zero point set of parameters is: Jo=0.79, ns=16,

n =1.6, FC=0.5,T=-, s=4o4. .We shall discuss the physical

plausibility of-this choice in this and-.later sections.

Briefly the choices are justified as follows:' Jo corres-

ponds to a point..in.a range-of values calculated in section

IX on the basis-of Surveyor and Orbiter-.rock size distrib-

utions and Apollo 11 and-12.data-for the complex index of

refraction of rock and dust. The Apollo data-give a range

for ns and nr that includes ,our choices. Fc agrees with the

value-calculated from the radar return from Tycho and its

ejecta blanket (section X). Finally..wewill see in this

section that results for T=- are close-to-results for T=4,

the-optical depth. of the smallest--crater we consider (sec-

tion X.). The choice of the parameter s follows the observed

distribution function for Surveyors:I, III., V, and VI (Sur-

veyor Mission Final Report. 1968) which gives- s=4.01o,4.5,40 6,

4.5 respectively. The-effect of s over- arange s=4.0-4.6

was found to have little effect on-.any-of the- computational

results; we will discuss this.later-in this section.
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The most important single question is whether our

calculations can match the observed depolarization ratio

in the different experiments. Figures 3.10 and 3.11 each

give observed and calculated values at 23 cm. for circular

in and out (i.e., transmitted and received) and linear in

and out respectively, averaged over. range rings. The sin-

gle scattering albedo is varied. Here, as in all subsequent

comparisons involving the polarized component, we must ig-

nore the observations in the region near cosO = 1. The

quasi-specular return dominates the polarized component in

this region, Also, the calculations for cose Z 0.1 should

not be taken too seriously since the effect of an undulat-

ing terrain and surface rocks, not accounted for in the

model, most certainly becomes important here.

The 23 cmo and 68 cm data shown in figure 3.10 as

well as the 3.8 cm. data (not shown) have a circular depol-

arization--ratio, rc, of about 3 db (Hagfors, 1967a; Zisk,

1970). The linear depolarization ratio, rl, measured only

at 23 cm. is about 7 db, or 4 db greater than rco For

wo=0.79 as well as for other choices of zero point paramet-

ers for best fit, r
1 - rc = 2db, and thus no one choice of

oo can exactly match both sets of data simultaneously. We

see that although a single choice of Jo can explain the

large depolarization and even the correct sign for r1 - rc,
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it falls slightly..short.of a perfect explanations This may

be reasonable given the.obvious departure of lunar rocks

from perfect 'spheres. Single.scattering then still must

play a. role in the.depolarization.

. .We..have succeeded.-in obtaining more. circular than lin-

ear depolarization with multiple scattering between spheres

just as Hagfors (1967a) has succeeded.-using single scatter-

ing from dipoles. A combination of the two effects could

add in the correct sense and account for the other 2 db,

We envision the dipole like depolarization as follows. At

any given wavelength most of the power is returned from

rocks with. a 2. For a > 2.and.s. > 3 the total cross sec-

tion decreases due.to the power law distribution of rocks,

while for a < 2 and s < 7 the decrease is due-to the rapid

decrease of the rock cross section.with.ao- A rock with a

long dimension such that a = 2 may.have a-much-smaller cross

section along its short dimension where a < 2-- The decrease

of cross section with a is very rapid.:for a < 2, much more

so than for a > 20 The dipole effect then is.due to those

elongated rocks with a = 2. Elongated rocks such as those

invoked in this discussion may be seen in many of the pic-

tures taken in all the Surveryor missions-(Surveyor Project

Final-Report, 1968).
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We next present the effect on rc of changing the zero

point parameters one at a time. The effect on r1 is com-

pletely similar where not shown. Figure 3o12 shows how rc

varies with the dielectric constant of the surface ns, for

F = 0. The striking difference between ns = 1 and n > 1

is easily explained by Snell's law to be due to the very

large change in the range of angles of incidence as the

radiation penetrates the surface. We will see this effect

often. The crater has the effect of removing much of the

angular dependence. We see this in figure 3.13 where F =0.5.

The depolarization ratio can also be influenced slight-

ly by the choice of the index of refraction of the rock rel-

ative to the dust, nr. This is shown in figure 3.7, section

III. The non-monotonic behavior with nr was discussed pre-

viously in section III and found to be the result of the

backscatter cross section. The depolarization decreases

as the backscatter cross section increases. We would ex-

pect this result for radiation multiply.scattered back

towards the source by objects that exhibit no single scat-

tering depolarization.

Figure 3.14 shows rc for 3o = 0.9 as the optical depth

is varied. The depolarization increases less quickly as T

increases and reaches its limit near T = 4. Thus we will

be justified in using the results for T = o. The parame-
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ter s has practically no influence on the-results for s

between 4-.0 and 4.6. This..-is not surprising because the

backscatter cross sections are all about the same for the

different values of s, even though. the maximum percent pol-

arization changes by a factor of 2.

Another touchstone of.our success in explaining the

observations is the depolarization ratio, rll, for linear

in and out measured along the libration axis. Figure 3o15

shows calculated and observed values for this case. The

average over a range ring, rl, is included for comparison.

There appears to be a real upwards shift in rll over r1 al-

though the spread in-the data points is greater. The calcu-

lated values also show this effect. The spread-in the data

points.may be due to noise, or, may be real -In the latter

case, the spread may be analyzed according to a single or

multiple scattering approach. If one attributes the scat-

ter to a single scattering mechanism then must suppose sys-

tematic differences in the shapes of large numbers of rocks

from place to place. On the other hand our explanation

would be that there are systematic differences in the rock

distribution and/or rock composition from crater to crater,

We feel this is far more-plausible.

The increase in the calculated and observed values of

rll over r1 is just the result of Fresnels laws and is fur-
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ther proof of the subsurface nature of the scattering pro-

cess. We can see this readily if we compare the variation

of r1 and rll with ns in figures 3.12 and 3o16. (Figure 3,12

is really drawn for rc, but only the variation with ns is

of interest here.) r1 decreases-monotonically with ns most-

ly as a consequence of Snell's law, as we mentioned previous-

ly. This is not the whole story for r11 The effect is

still there as witnessed by the behavior of ns = 1,0 and

ns = 102. But as ns increases further the depolarization

decreases, not increases (ie.,rll increases),

For rll data is taken along the libration axis where

a plane of incidence may be defined, unlike-data taken for

r
1

where the average over a:range ring makes the definition

of a plane of incidence impossibleo :Radiation polarized in

the plane of incidence is preferrentiaily transmitted through

the surface. Thus any radiation that.crosses-over to the

other--polarization will find it harder to escape the sub-

surface layers than radiation polarized in the same mode

as was transmitted, Any depolarization would be decreased,

the-effect increasing as n. increases,
s

In line with the previous discussion we would predict

that incident radiation polarized perpendicular to the lib-

ration axis would give more-depolarization than the average

over a range ring. The conclusion-from all-this, that the



243

~I II I I

I dn
0

0

(L0

C

r-
0

-C0

0

o1r

SIXV uo!4Djq!l 6UOlI (80) JeMod paz!JDlodaC/paz!JDIOd o!04D

co CD
II II

In) 0
C C

II

C 

Q
II

rl)



244

scattering process is subsurface in nature, is certainly

not a new one (see, e.g., Hagfors et al., 1965). However,

we emphasize that the set of data we have been analyzing

has never before yielded this result. Presently we shall

discuss an experiment that shows the subsurface scattering

more clearly.

It is mostly of passing interest to discuss the ef-

fect of the crater on the depolarization ratio ril. The

other parameters, wo, nr, s, and T, act exactly as they do

for r
c

and rlo Fc too acts the same, but since there is

more angular dependence here, we can see its influence more

readily. Figure 3.17 shows the variation of rll with F
c

The statement that can be made from these graphs is that

averaging over a crater removes almost 100% of the angular

activity of r1 1, rl, and rc, except where eose = 1. This

also holds true for rcl, to which we now turn.

The experiment that measures r cl gives strong evidence

that the radar has been scattered beneath the lunar surface.

The problem with the interpretation, however, has been that

for 23 cm. wavelength an index of refraction, ns, of about

1.3 (e = 1.7) is obtained rather than the value of 1.6 (E =

2,6) that cross section data, taken at the same wavelength,

gives. Hagfors et al. (1965) state that the two conflicting

values can be reconciled if a two layer model is postulated,
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The larger value of ns due to observations of the absolute

value of the radar.cross-section would then be due to an

upper layer with n
s

= 1.3 and a lower layer with n
s

2.2o

Unfortunately, it.is difficult to achieve this high a value

for ns from lunar dust. Combining the value given by Costes

et al. (1970) for the maximum density achieved in packing

the-lunar dust returned by Apollo.ll with the curve of den-

sity vs. dielectric constant given by Gold et al. (1970)

for Apollo 11 fines, the maximum index of refraction is

n = 1.7 (£ = 2.9). Values as high as n = 2.2 could only
s s

be achieved under much higher pressures than would be ex-

pected one half an absorption length down. The depth cor-

responding to the two way absorption length of 2.3 m at

23 cm. is 1.2m, so that Hagfors would.need to postulate

bedrock just a meter into the surface. Estimates of the

depth of the regolith, however, are-generally greater than

this (Quaide and Oberbeck, 1968)

We shall show that it is possible to interpret all

the 23 cm. data in terms of one value for the index of

refraction. The radar experiment that measures r 'C con-

sists of illuminating the moon with a circularly polarized

beam and measuring the ratio, rcl, of the two linear com-

ponents aligned perpendicular and parallel to the libration

axis. If the radar was being returned by single scattering



from surface rocks, no.difference in..-the-.linears would be

expected. The-situation would:be-expected.to.change in the

scattering is subsurface since.Fresnels:laws of transmission

are differentfor.the two.linear.polarizations aligned in

and normal to the plane of incidence, The data for 3.8 cm.

and 23 cm. along with.a.parameterization of the calculations

in ns for zero point conditions, is shown in figure 3.18.

The lack of a strong upturn in..the data.near'the. limb shows

that our neglect of surface rocks.-is justified-since there

the slant optical.depth:is.greatest-and transmission through

the surface should have its.smallest.influence.

The actual position of the curves depends to a very

large degree on the choice of F. and to-.a.lesser extent on

-X (See figure 3.19), and not at all on nr-and s. Thus

while figure 3.18-implies that taking ns = 1-.6 for 23 cm

(and ns = 1.3 for 3.8 cm) is consistent with the calcula-

tions,.it by no means says-that these.are the-correct values,

In fact the variation with Fc is so large that we instead

have used figures 3.18 and-3.19 to determine that Fc = 0.5.

This choice of F is consistent.with.a value determined
c

from measurements-across the crater-Tycho, discussed in sec-

tion Xo

The variation of rcl with- o is also shown in figure

3.19 for Fc = 0. If no depolarization occurred--in the scat-
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tering then rcl would vary as T
2
where T is the transmission

coefficient. The scattering has the effect of blurring the

polarization induced by transmission into the layer, and

thus rcl varies as T to a smaller power than 2, though not

quite 1.

Finally noting the rather small.polarization occurring

when the crater is the only source of the scattering, Fc = 1,

it is very difficult to say whether an observation showing

rcl " 1 means the scattering is not subsurface or that the

terrain is very crater filled or chaotic. Thus we disagree

with the statement of Hagfors et al. (1965) that "the fact

that no systematic difference in the backscattering coef-

ficients of the two polarizations is seen in the Tycho region

may be interpreted-to mean that-this region does not have

a tenuous layer..," . We feel that the averaging effect of

the crater walls and the chaotic. crater floor are at least

an equally plausible explanation. The high rock number den-

sity in that region, which-we have taken as characteristic

of fresh craters in general, leads to a multiple scattering

approach. The multiple scattering occurring beneath the

surface would lead.to a difference in backscattering coef-

ficients were it not for the averaging process over the

crater.
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We-come finally..in.our graphical present:ation of ang-

ular variables-to the discussion of the diffuse power re-

turned.per unit area.averaged. over a range--ringo The suc-

cess we have had is. mostly due:..to the-influence,eof the die-

lectric constant of the surface and-the shadowing 'and aver-

aging effect of a crater. The influence of the multiple

scattering in determining the power n of cos n is restrict-

ed to reducing the T2 dependence-arising. from the two way

transmission through the surface-.to one between T2 and T1

The shadowing in the crater-introduces approximately a

cos1 0 dependence for intermediate and large values of e0

Figure 3.20 is a comparison.between the observed 23

cm. circular depolarized cross section/unit area and our

curve- for the zero point parameters-for.best- fit to this

and previous data. -The curve, given in db,.has been shifted

with respect to the data points to achieve- a good- fit, This

is necessary since so far we have included no information

on the-actual fresh crater distribution that serves to det-

ermine the absolute cross section.

The fit is reasonable.- While the actual shape of the

curve does not closely parallel the.data..points, the decrease

in .the calculated cross section/unit area from-cose = 1.0

to cose = 0.1 is about right0 -.The.failure.to match the

data-more closely is understandable--in view-of the consid-
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Figure 3.20 Theoretical depolarized cross section per unit area for circular

polarization transmitted and received. Observations (Hagfors, 196 7a)

included for comparison.
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erable topographic differences in.lunar terrain-and the un-

known angular variation of the absolute reflectivity of the

surface rocks which have not been. accounted for in our mod-

el. The possibility.exists,. for example,-that.on the aver-

age a ro'ck lying on the surface will have a-larger cross

section near.the subradar point that it will towards the

limb due to the fact that a lower center of gravity is in-

herently more stable so that the large end.of.the rock is

in contact with the ground. -The-region- beyond cose 0.2

is most susceptible to the effects of- surface- rocks and sur-

face roughness and probably accounts for the--positive slope

change at large e.

The following graphs..show the polarized and depolar-

ized cross section/unit.area.for.circular in and out, Where

not shown polarized-cross sections..are similar to depolar-

ized cross sections and-follow-the depolarized-.ones almost

exactly as can be seen and derived from the curves of rc

and rl. The-linear results.as well.-will not-be shown since

there is no essential-difference--between circular and linear

other than the. polarized-depolarized power--difference given

by rc and rlo

The two most important-parameters-that affect the

shape of the theoretical-curves are.F -and n ..-.Figure 3.21
c s

shows- that parabolic craters alone, give an average cross
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section/unit area that varies as cos.0 while-a flat surface

is closer to cos 0 70 and approaches cosl 5 e near the limb,

We have chosen, on the basis of our discussion of rcl, to

use F = 0.5 as the fraction of the power returned from cra-

ters alone. Thus the exponent of cosO is.between these two

extremes.

Figure 3.22 shows the effect of ns withFc = 00 It
5 c

is evident that we owe a greatdeal of the angular variation

to ns. Multiple scattering occurring on top of the regolith

interface, supposing the calculations to be valid here,

would give more limb darkening.than beneath the interface.

The two factors at work here, Fresnels laws of transmission

and the decreased range of the angle of incidence within the

medium from Snell's law, combine in opposite directions to

give the results in figure 3.22.

The parameters !,, s, and T have-little effect on the

angular dependence of the diffuse cross section per unit

area over a wide range of values.- This.effect, as we have

mentioned, is due to the strong reduction in angular var-

iation caused.by the index.of refraction of:the surface.

We note that qualitatively the.relative: cross sections are

affected to a-small extent-by ns, Fc, and s and to a very

large extent by 3o, T, and nr . The increase in cross sec-

tion is, as we-would expect, in'the'direction of increasing
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0.2
cos 8

Figure 3.21 Cross section / unit surface area for circularly polarized power
transmitted and received. F is varied.
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wo, T, and nr. We-shall.. discuss these points. again in sec-

tion X when we--ceonsider.the:-absolute- cross- sections.

We have had-much success--in explaining the lunar

radar datao Mars,. which- appears: to-. share.:many surface

characteristics with the--moon, may-be:amenable to a sim-

ilar interpretation. Future observations-of Mars with

improved.. ground.. based.: radar as-well. as-bistatic radar ob-

servations employing spacecraft':near the-planet may yield

-much information on- fresh craters;--boulder populations,

and surface compositiono -We would-advise caution, however,

in any.attempt to.apply-a-variation of-this-model to the

planet Venus--the-most-un-moon-like of all the .terrestrial

planets. Observations of'Venus show-most-of the terrain

depolarizes less than the moon (Jurgens, 1970). This could

be interpreted as.smooth relatively boulderless terrain,

rounded scatterers,-or in the context of our model a lack

of multiple-scattering from: buring rocks. The higher rad-

ar derived index of refraction-of the- surface of Venus im-

plies that the- surface--is considerably more compacted than

that of the moon thus arguing-against multiple subsurface

scattering (Campbell,.1971)o There are--also localized re-

gions on the planet where the-depolarization is much great-

er than is found anywhere--on the--lunar surface. We would

be very reluctant to- try to force our lunar model to ex-
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plain this. Instead we believe:the depolarization is

due to rough broken terrain,.a product of tectonic and vol-

canic activity unlike anything found on Mars or the moon.

In this view the depolarization would be caused by mult-

iple scattering from surface facets-and surface rocks.



IX THE SINGLE SCATTERING: ALBEDO-THE. PIVOTAL POINT OF THE

MODEL

We saw in section VIII that our model revolves around

a single main point - a single scattering. albedo that most

would agree is rather high. All the observations we discuss-

ed-section II were fitted in the-previous.section by assum-

ing o, Z 0.8. On the basis-of data brought back by Apollos

11 and 12 and Lunar Orbiter and Surveyor results we will

show that high wo values are likely.

The dependence of jo on nr, ni, ns, and s will be not-

ed and values for wo will be calculated for observed lunar

rocks distributed according. to a fresh crater rock distribu-

tion function we shall develop. Possible:.correlation of the

depolarization with heavy metal abundance will be suggested.

We will see-that we-are-able:to reproduce the. observed con-

stancy of the depolarization with wavelength, yet predict a

marked decrease-with increasing wavelength - an effect not

predicted.by a single scattering-model. We also will suggest

another test of the model,

The-calculations discussed-previously were done by

assigning a value of the single-scattering albedo to the

phase function and varying nr, ns, and.s independently even

though So is a function of them. We.found, however, that

the depolarization is virtually unaffected by s over the

259
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range 4.0 to 4°6; variations in ns change the angular depend-

ence by only a small amount; and nr over a realistic range

from 2.2 to 1.4 changes-the depolarization by only 1 dbo

Moreover, with the-single exception of absolute-cross sec-

tions, all the-multiple-scattering-calculations are relative-

ly insensitive to s-and nr over the above ranges. On the

other hand n
s

does affect thenpolarization along the lib-

ration axis for circular in linear out, rcl, but as we shall

argue in this section-and the-.next, n
s

is. rather well re-

st.ricted and we shall take-it to be 1.6 for 23 cm, This is

the value used in our discussion of rcl.

Since the-fit of-our calculations is unaffected by s,

we are free to model 10 with a-rock distribution function

that departs somewhat from the one actually used to pro-

duce-the graph-s. Specifically we take a--more realistic mod-

el to be one-that exhibits a break in the power law distrib-

ution similar to what is observed, We now derive nV(a).

In our model we assume that fresh young- craters are

the source of the diffuse component. Consequently we must

take nV(a) to represent-the-volume distribution within and

near fresh craters. Unfortunately in those regions where

we have good data on surface-rock frequencies from the Sur-

veyor series of lunar landers there are no fresh craters in

the vicinity. The possible exception to this is Surveyor
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VII which landed.-near the.-rim of Tycho, one of the youngest

large lunar features. The--area-covered in the-photographs,

however, is quite small compared to the.area-coverage in

Lunar Orbiter photographs-. :The Lunar Orbiter photographs,

on the other hand, do not permit:boulder counts below 0.5 m

radius. Therefore we user-Lunar Orbiter data to determine

the absolute number densities for large rocks and Surveyor

data to determine the-.break point and slope of the power

law distribution for small rocks0. The coefficient of the

small rock distribution function was determined by matching

the absolute value of the number densities at the break

point. The-calculation follows.

From the data of Moore (1969) we have for Tycho

na(a) = 1.013aa- 4/cm
2

a

From the Surveyor Project Final Report (1968), we have

n a(a) = noa 2°82/cm2 , a < 25 cmo

Equating the number density :at 25 cm we derive the coeffi-

cient no

We-have--a size-distribution of surface rocks but we

require a volume' distribution function. The two distributions

may be related:-through the use of the Rosiwal (1898) princi-

pal: the ratio of the area occupied by the particles of a
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given size- to the-total area studied.. is equal. to the ratio

of the volume of the particles-of this sizeto the total vol-

ume assuming.the particles- exposed at the:surface are repre-

sentative of the particles in the subsurface and the layer

is uniformly mixed. In a non-rigorous fashion we may use this

law in its differential form:

.4123.41 nv(a) 4Ta3 da = n (a) ra2 da
V 3 a

The result of all this is

3.42 nv(a) = 0.017a-3 8 2/cm3 , a < 25 cm.

= 0.76 a-5 /cm3 , a > 25 cm.

In view of the present data this is our best guess as

to the average rock distribution function. There will un-

doubtedly be areas with higher number density which will

have higher jo's than those we shall calculate, as well as

areas with lower Fo's. Since the depolarization and cross

section depend on wo to a higher power than 1, we may expect

that the predictions based upon jo calculated below are more

uncertain in the direction of increasing ~o than in the oppo-

site direction.

A good intuitive feeling for the physical appearance

of rocks distributed according to nV(a) is obtained from the

calculation of fV, the fraction of the total volume occupied.
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For rocks larger than 1 mm., fV =-0.58. The fraction of the

volume occupied-by- rocks contributing to the scattering at

any wavelength gives a good feeling for the relative magni-

tude of t,. Thus integrating from a = 1 to a = 20, fV is

0.03, 0.21, 0°29, 0.26, 0.20 for 7o5m, 68cm, 23cm, 3.8cm

and 8mm respectively. The single scattering albedo, as we

shall see-below, even though convolved with the Mie theory,

follows the above pattern quite wellt We-see-that on the

basis of the-size distribution alone wo is fairly constant

from 68 cm. to 8 mm., but 1o for 7.5 m is down by a large

factor.

The next parameter of interest in the calculation of

~o is the absorption length in the dust, Za = lXo We can

obtain to in two ways: from thermal models of the lunar sur-

face and by direct measurement of lunar fines brought back

by Apollo's 11 and 12,

Linsky (1966-) has derived a-set of models to fit the

curves of radiothermal temperatures versus phase angle, We

get lo = 10 and to =..16 from two of his best fit models.

The other models all give lo = 10.

Measurements of ta from Apollo.data has-been carried

out by Gold et-al. (1970,1971)-. The absorption length de-

creases- as the degree- of packing increases. Using the data

of Costes et-al. (1970) for densities-and porosities observ-

/

l
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ed in core-tubes and under maximum packing and referring

this to the curves-of Gold et al. (1970,1971) for absorp-

tion length versus density we-get Zo = 100 This is the

value we shall use. We note, however, that terrestrial

basalts with similar powder densities- have absorption

lengths from 2 to 5 times greater (Campbell and Ulrichs,

1969). This difference may be due-to the-high ilmenite

content observed in the rock and dust (Chung et al., 1970;

Katsube and Collett, 1971). We-shall return-to this point

shortly.

We can readily calculate ns, the index of refraction

of the dust, from the same set: of measurements used above.

The densities in two core tubes-and the density of maximum

compaction all give n
s

= 1.6 ± 0.05. This is the index of

refraction of the surface that we used in section VIII to

derive F = 0.5, We show in section X that this value of Fc c

can be calculated a priori, although the uncertainty is lar-

ger than for ns calculated a priori. Thus we have used ns

to determine F
c

We come finally to the complex index of refraction of

the rock relative to the dust, nr = nr - ini.. In what fol-

lows we have divided the real part- of the index of refraction

of the rock relative to vacuum by-ns to obtain nro The imag-

inary part, however, is not divided by ns. This is because
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for small values of ni relative to nr (i.e,, small loss tan-

gent, tan6 = Ei/er), the absorption length in the rock is

inversely-proportional to ni and independent of nro Since

the absorption in the rock does-not change with n
s
, neither

does n..

The uncertainty in the values-we-shall use for nrr

are the greatest source of error in determining e.. Ter-

restrial rocks exhibit large variations in nr and ni in

samples taken in the same-area and even greater variations

in samples taken in different areas (Campbell and Ulrichs,

1969)o There is-no "average' :terres-trial.rock, although an

extraterrestrial observer might-try to define- one, This is

just-what we- are--trying to.do for lunar rocks. Consequently

it is useful to emphasize- the--variability-of theoretical

)O's before defining--a-most probable value.

Table · 3.2- give-the: subsurface single scattering al-

bedo for 10-lunar rocks-brought-back by Apollo's 11 and 12o

The -complex index of refraction relative to the -dust has

been derived-- from published-.graphs. .- .M. Campbell (personal

communication) has emphasized-that the values read from

these graphs are more accurate-than.the data itself; hence

the reluctance -to-publish tables as we- do below. The albe-

dos indicated as lower limits-were-derived from nr measur-

ed at- 30m wavelengtho. · For shorter.wavelengths n remains
r

-relatively constant, but n i decreases and Zo--increases.
1
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TABLE 3.2

2o CALCULATED FROM MEASURED nr AT 23 CM. WAVELENGTHr

nr = nr - nii'Pi=r nr -nii XO REFERENCE COMMENTS

1.7 - 0.08i 0.58 Gold, Measured at 68 cm.

1.6 - 0.08i 0.55 O'Leary & wavelength.

1.3 - 0.05i 0.49 Campbell

1.5 - 0.05i 0.61 (1971)

1.8 - 0.03i 0.75 Katsube & Igneous; ilmenite con-
tent 15-20%

1.8 - u.u1 | U.8£1 Collett Igneous; ilmenite con-
tent 3-4%

1.7 - 0.03i 0.74 (1971) IBreccia

. - O.i4i O.b2 Chung, TIDense crystalline
ligneous; ilmenite 16%

2.0 - 0.14i 0.54 Westphal Dense crystalline
ilmenite 15%

1.5 - 0.06i 0.57 & Simmons IFine grained breccia;
ilmenite 9%

1.7 - 0.04i 0.70 (1970) N Hawaiian Oahu Basalt

1.5 - 0.06i 0.57 N Cape Neddick Gabbro

1.5 - 0.0024i 0.87 'A Simulated sample,
IP similar to Apollo
0 rocks of this ref.
L but ilmenite 4%

1.6 - 0.02i 0.80 Wood (1970) 0 Proposed material for
lunar highlands;
anorthosite

Ij
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Also given in the-table are--two earth basalts, a simulated

lunar sample--with similar chemical analysis..but reduced il-

menite content and an-anorthrositic rock such as that pro-

posed by Wood.et'al. (1970) as a-major.constituent of the

highlands.

Katsube--and--Collett (1971) and Chung.et al. (1970)

have suggested-that largen
r

and-nm. may-be correlated with

increased ilmenite content -These factors act in opposite

.ways on oo, but referring to table 3-.2-there appears to be

some-correlation in the direction of decreasing ilmenite

yielding higher o' s. The-Surveyor alpha scattering exper-

iments of Surveyors-V and -.VI,-both--of which landed in maria

regions, and Surveyor- VII which. landed in the lunar high-

lands .(Surveyor Project Final Report, 1968) imply the high-

lands have less-.heavy.metals .than the maria. We would ex-

pect a smaller ilmenite abundance-in- those regions. This

expectation co-incides·-with the-speculation of Wood et alo

(1970) and Wood-(1971) that the-:lunar highlands have a high-

er abundance-- of anorthrositic-:rocks.. The idea:is based in

-part on observations of Apollo 11 and 12-fines- and the fact

that such rocks- have- lower densities- than maria basalt,

Since highlands cover 2/3 of the-visible-face-of the moon

we suggest-that-rocks with'" small-ilmenite abundance are the

principle-depolarizing-. agents.- -From these considerations
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and table 3.2 we-suggest that Jo = 0.8 0.1 in the highlands,-0.3

lower in the maria.

The limits on JO imply that at best multiple scatter-

ing in the lunar surface can explain almost all of the obser-

ved depolarization. At worst, figure 3.10 implies that at

least 30% of the circular depolarized power is due to mult-

iple scattering and.70% is due to single scattering while

figure 3.11 implies that at-least 50% of the linearly depol-

arized power is due to multiple scattering. As we have men-

tioned.in section VIII we would expect some-of the observed

depolarization to be due to single scattering, no matter how

high a single scattering albedo is observed or deduced.

Before leaving the subject at hand we pause to con-

sider whether the wavelength dependence of 2o in our model

can explain the observed wavelength dependence of the absol-

ute diffuse cross section and the circular depolarization

ratio. As we have suggested before, wo is approximately

constant form 68 cm. to 8 mm., but is significantly lower

at 7.5m. Specifically, for the simulated lunar sample of

Chung et al. (1970) 2o = (0.45,0.86,0°87,0.85 ,0°82) at

(750,68,23,3.8,0.8) cm. respectively. We see that on the

basis of 2o alone we are unable to explain the increase of

the diffuse-cross section with decreasing wavelength. An

explanation-is proposed in:the next section where we discuss

the nature of the crater-scattering more closely.
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We are successful, however, in explaining the observed

relative constancy of the depolarization from 68 cm. to 3.8

cm. Single scattering would imply the same result. But sin-

gle scattering-would.predict that towards 7.5 m. and at lon-

ger wavelengths-the-depolarization would remain constant pro-

vided there is no systematic change of rock shape with size.

We predict a.rapid decrease- of depolarization with wavelength

beyond 1 m., the--exact rat-e- being:highly dependent on the

amount of multiple scattering.- A curve of depolarization vs.

wavelengths greater than 1 m. could yield immediately from

our model the degree-of multiple vs. single scattering. In

view of the possible.-geological- significance-of the mult-

iple scattering model we urge-such. measurements be made.

We propose one final->test-of our' model, Since the

-depolarization is-highly dependent on.the.random existence

of large.rock.concentrations we-.predict'that as the resol-

ution element-of the'radar" observations' decreases the de-

polarization will begin to fluctuate more than would be ex-

pected from de-creasedSsignal to noiseo:. This -effect may be

present in. figure 3.15, as.was discussed. in section VIII,

Further,.we predict-that the-sense.of the fluctuations will

be in the direction of decreased depolarization in the ab-

sence of large boulder fields. If such an effect is obser-

ved only multiple scattering-could account for it. We urge

that this observation-also-be:performed.



X THE TOTAL DIFFUSE RADAR CROSS SECTION OF THE MOON

Until now we have been discussing the relative angu-

lar behavior of the diffuse component. No effort has been

made to describe the fresh crater distribution and the de-

tailed nature of- real -lunar craters. Consequently we have

not been able to discuss the-total diffuse cross section,

to which we now turn.

This section is- divided ·into five subsections. In

the first we-deve-lop-the·equation relating -the scattering

matrix for a typical crater site and the distribution func-

tion of lunar craters to the diffuse cross section. Next

we describe a model for the observed crater distribution and

some characteristic features. In-the final three parts we

discuss, in turn, the total diffuse cross section, the wave-

length dependence of the--cross section, and the observed

differences between highland and maria regions. We suggest

that highland-maria- differences may be due to mineralogical

differences and thus propose- that the depolarization ratio

may be used to map the moon geologically,

1. Diffuse Cross Section - Theory

We--have chosen to derive-the diffuse cross section

in two steps. First we use--the--Mueller--matrix for crater

and ejecta blanket, M, to calculate the gain from a complete-

270
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ly cratered planet. Then the-gain is combined with a cra-

tering law to produce the gain-(or cross sect.ion) for the

moon. In what follows we take'M to be-a scalar scattering

function instead of a matrix since we are interested in in-

tensity only.

Let Pt-be-the;-power:transmitted and>P r the power re-

ceived at the-radar unit; Ar, the area of the receiver; Gr,

the gain:of the receiver; L, the lunar distance; gc, the gain

of the fully cratered--lunar surface; and a, the lunar radius.

Then the..flux incident at the moon, normal to thedirection

of propagation is Po.

3.43 PtGt
Po -

4 TrL

The- power per unit-solid angle or intensity. radiated back to

the receiver-from an element of area dA is

4 d = M(p)PoUdA
4wr

The total intensity reflected-back-to earth is

3.45 I = M(p)a d'd

where n is the azimuthal coordinate.. The-power received by

the antenna is the-intensity:times the solid-angle occupied

by the receiver as seen from the moon.

3.46. P Ir Ar
L2
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On the other hand the power received is given by the radar

equation

PtGtAr
3.47 P gcr a2

r (47rL2 )2 c

Substituting equations 3.43 and 3.45 into 3.46 and comparing

3.46 and 3.47 we find

3.48 gc(t) = 2f M(u;T)du

For a Lambert surface where M = 4 p2 the gain would be 8/3.

We also note that this definition of g equals 4 times the

geometric albedo of a-planet which scatters according to M.

The parameter- T, the optical depth, has been reintroduced

in equation 3.48 for use below.

In our model of the lunar surface we will assume that

only craters greater-than. a-diameter--Do-are-blocky enough to

contribute to the cross section. This conforms to the obser-

vations of Moore (1969) who observed that small fresh craters

have a much smaller--proportion of their area covered by rocks.

We take-the depth of the scattering layer to be uniform in-

side and outside--the-erater-and-to be only a function of the

crater diameter, D. Thus T = T(D). The distribution of

fresh craters is given by n(D) such that the number of crat-

ers per unit area with diameters between D-and D + dD is

n(D)dD. Then the-gain of the-model moon is
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3.49 g gc(T (D))- n(D)dD
Do

2-. The: Fresh: Crater D-istributi.on Function

The discussion below is based upon the work of Moore

(1969) and. his discussion of crater- frequencies and morpho-

logies. From his work we find that for rough maria as well

as for some highland regions the number. of craters with dia-

meters greater- than D is given:by- the- general law

N(D) 10-1D 2 , D < D
3.50 c

- 10-1D D
-
3 D > D

c c

Smooth maria which we-will-not consider in any detail, dis-

play. a slightly .more- complicated-behavior but the general

-2behavior- is like-that" of equation 3.50. The D law refers

to a steady state surface which- is the result of-an equil-

-ibrium between- crater production- and- erosion by extensive

cratering. The--D 3 law reflects the-rate of crater produc-

tion for a particular model-of: impacting-3as.teroids over

geologic time.

We. are interested :in-:.the ~ distribution--function for

fresh craters.- -This-can be-derived---from'the distribution

function for all: craters-because: steady.state' .frequency

-distributions-exist not only fo-r all craters but also for

craters with- given morphologies. ©Our definition.of a. fresh



crater, however, differs from Moore's in that we differenti-

ate on the basis of scattering.'propert.ies, not morphologies.

Moore defines a fresh crater as one-in which 31/32 of the

original relief has-been-preservedo We shall define a fresh

crater as having an ejecta blanket capable of significant

scattering. For that purpose we define t* to be the depth

to which bombardment by small meteorites causes a crater to

cease being a strong radar anomaly. Now Moore states that

crater lifetimes are proportional to their depths. This can

be derived with some discussion from equation 3.50. What

this means for our development is that the depth of steady

state pulverization of the-rocks in the ejecta blanket

(which we take as covering the inside of the crater as well)

is proportional to the age of the crater. Thus a fraction

t*/d of all steady state craters-with diameters D will be

among those we shall consider fresh, where d is the crater

depth. For fresh craters we will take D = 4d following

Moore.

The position of the-break point, D , is also a func-

tion of crater morphology. D is the smallest size crater

that has not been completely eroded over the lifetime of the

moon. If we demand instead a depth of erosion t*, the break

point would come at a larger diameter dc/t* D , where dC is

the depth corresponding to a diameter Dc. The D 2 law of
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the steady state distribution now becomes a D
-
3 law after

multiplication by t*/d. On the-other hand the exponent of

the original D- 3 portion of the cratering law remains un-

changed because a constant fraction, independent of D, would

be among.those we-would consider fresh.. This follows when

we note that craters with D > D have not been destroyed in

the history of the-.moon and when we -assume-that the exponent

of the power law-distribution of impacting bodies has not

changed over time. Then- the fraction of craters with D > Dc

that has:.been erodedd to a depth. t*-will be..independent of D.

With the-above:-considerations the'-distribaution func-

*tion no longer has a break.--point and we may write for all

fresh craters

3.51 N(D) =o 04t*D- 3

and the crater density function becomes

3.52 n(D) = l2t*D-

Not all of these craters, however, will possess ejecta

blankets blocky enoughor deep enough to cause significant

scattering. The crater must penetrate-the regolith to have

blocks. For highland regions this lower limit, Do,. is 100 m.

diameter while for maria 'regions the limit is 10 m. Not all

craters larger- than- these- limits-produce- sufficient blocks

to be of interest.- From-the-small amount of data available

on the fraction of area covered-'by blocks large-r than 1 mo
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for various crater diameters we take Do to be 400m. The

value may be different for the maria and highlands. This

estimate is very crude and is based upon poor statistics.

From the limited data available, the lower limit scales

approximately as the wavelength so we-write the lower limit

as DoX = Do0 A

The optical depth of the-ejecta blanket can be est-

imated by taking. the depth-of the ejecta blanket to be 1/2

the rim height- The depth-of the eJecta blanket is then

2x10 2D, .since the rim height is directly proportional to

Do The-optical depth for a 400 m crater at 70 cmo wave-

length is 12 for the rock composition and distribution dis-

cussed previously. As we have seen in figure 3014 the lim-

it for infinite-optical depths is.approached near T = 4°

Thus it will be. sufficient' to use only the results. for infin-

ite optical depth in deriving the cross section. This is

also the justification for displaying only:the results for

' =,' in section VIII. The ad-hoc assumption'that the depth

of the e-jecta is 1/2 the- crater rim height.is not crucial to

this analysis, though a much lower value might somewhat alter

the cross section we-calculate next0

The depth t*-may'be estimated by taking it to be that

depth with a two way optical'depth-due-to dust alone of lo

For the dust obtained by Apollos 11 and 12, tx' - 5 . This
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value for t* is valid when we expect that the meteoritic

flux pulverizes all rocks to this depth and stirs up no

rocks from below.

3. The Total Diffuse.. Cross Section

Using.the previous choice of parameters the equation

for the diffuse-cross section becomes

a(X) = wa2 J g ( T=O)-- (6oD- l4 ) dD
Dox

3.53 = 4.71 gc/Do ra2

= 0.0127rra2

The cross section above, while.being. independent of wave-

length as written, is more strictly true for 70. cm. wave-

length. Do may be. dependent, but-was derived for X = lm.

Also, gc was expressed for nr - 1.6 at 70 cmo and this too

varies with A as discussed below.

The observed diffuse cross-section at 70 cm. is

0.011 ± 0.005 ra2 (Pettingil'and Thompson,1968). Our value

agrees with this quite-well, but the- agreement must be in

part fortuitous. There are large uncertainties-here. We do

not know ZO very well due to uncertainties in nV(a) and iir

The value of wo is not expected to remain constant across

the crater or from crater to crater- as we have assumed. Do

is not well known. and, to:a-lesser:-extent-, neither is t*.
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The cross section is, respectively, inversely and directly

proportional to these last two parameters. Other uncertain-

ties are introduced by the crater shape, which is not pre-

cisely parabolic as we have assumed, and by the fraction of

the area covered by the ejeeta- blanket, 1 - Fco It is dif-

ficult to assign error limits to most of the-above factors,

but we estimate, conservatively, that-the limits on the cal-

culated diffuse:cross section are _ 3,

A study of the crater Tycho lends more weight to our

results, but cannot be used for error estimates since the

crater is very large. and constitutes a statistical sample

of one. .Pollack (personal communication, 1971) has calcu-

lated the-diffuse eross section of the crater interior to

~D2 x 'D 2

be 0.4 D X 2 whereas our calculations give 0.5 - He

used the observed-.depolarized-:.enhancement along E-W swaths

across the crater, allowing for the difference -in the back-

.ground near- Tycho from"the mean- background. He also calcu-

lates that the interior of the crater is responsible for

50 + 10%:of the total diffuse-reflectance. This is further

justification for our use-of F =-0o5 and lends additional

weight-to the choice of n. = 1o6o
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4. The Wave-len-g-th Dependence
v

The observed diffuse-ecross section is about a factor

of 2 higher at 3.8 cm than at 70 cm (Pettingill and Thompson,

1968), and approximately obeys a X-0.3 law (Hagfors, 1967a)o

Equation 3.53 for the diffuse cross section displays no wave-

length dependence, however. This is due to some of the ap-

proximations we have used. We expect the observed wavelength

dependence to arise- from three-factors: the single scattering

albedo, the refractive index- of- the ' rock relative to the dust

and the- fraction of the. lunar surface covered by fresh craters.

The single scattering albedo, as we have calculated in

section IX, is relatively-- constant between 3°8 and 70 cm.

This is largely the result- of the rock distribution we have

chosen, and the position of the break point. There is evi-

dence, however, from the depolarization ratio rc shown in

figure 3.10, section VIII, that Jo decreases from 0.88 to

0.83 as X increases from 23 cmo to 68cmo This implies (see

figure 3.23) a decrease- of a factor of 1.3 in the cross sec-

tion, which is similar to the actual observations within the

error bars.. The decrease--of -o with A is expected on the

basis of measurements of Apollo 11-and 12 rock samples (Chung

et al.,1970; Katsube and Cojllett, 1971). Their work implies

that the loss tangent increases-as-X increases, but approaches

a constant value-for X nea 1-10 cm. Thus-we would not ex-
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pect much change-in 3o from 23 cm. to 3°8 cm. The constancy

of the depolarization ratio-' at the:se--wavelengths (Zisk, 1970)

adds weight to this argument,

But a variation in a is observed between 23 cm. and

3.8 cmo The second factor, nr, becomes more important in

this interval. We expect nr to increase as A decreases be-

cause a large fraction of the radiation will be returned in

the upper meter-of the dust where the density and refract-

ive index of the dust can be expected to be-smaller than at

greater depths. Thus nr increases-as A decreases- Fresnel's

laws, along with the more complete Mie theory, predict that

a increases as nr increases. This is shown in the single

scattering phase function in figure 38,. section III, and the

cross section per unit area-in figure 3°24. A factor of

1 --2 in cross section is thus predicted, depending upon the

refractive index of the- rocks relative-to vacuum.

The third factor in the wavelength dependence is the

fraction of area covered by fresh craters. According to our

derivation-it-is proportional to t*/Do, I To a first approx-

imation we took both t* and DoX to be directly proportional

to AX The absorption length and hence t* is known from ter-

restrial rocks to vary as between A °

0 0
and Ai 15 (Thompson

et alo, 1970). The dependence of DoX on A, however, is on-

ly speculative since Lunar Orbiter and Surveyor photographs
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give little information on fresh craters: in the rock size

regime in which we-are-interested. There is evidence that

the largest rock size-produced-in a cratering event is di-

rectly proportional to the:size of the crater (J.B. Pollack,

personal communication, 1971). This is the source of the

assumed X1.0 variation for DoX. Thus the fractional area

covered by.fresh. craters has littl--effect..on the wavelength

dependence, -although the--exact- effect is-uncertain.

5, Maria-Highland Differences ' and.;Implications for Future

Radar. Experiments

Highland regions:are-consistently observed to have

a larger-depolarized-return than-maria regions.. Observa-

tions at 70cm. wavelength (Thompson, 1968) reveal variations

-of from-2 to 5, and similar results have been obtained from

a preliminary analysis of 3.8 cm. data (Zisk, 1970)o The

explanation-for this phenomenon, within-the context of our

model, is probable differences-in the single scattering al-

bedo between-the--types-of regions due-to differences in min-

eralogy.

We suggest--that the most important single parameter

affecting maria-highland differenees.is the single scatter-

ing albedo,~o0 . Figure-3.23 shows that a factor of 5 in-

crease-in the-depolarized- crossseetion- results- by changing

o, from 0.65 to 0,90. -This range of-o, is within the range
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calculated for the refractive index of Apollo 11 and 12 rock

samples obtained from maria regions alone. (See table 3.2).

Alternatively 1o may be varied over this range by changing

the absorption length in the dust, £a' by a factor of 3.5,

since to a first approximation l-eo is inversely proportion-

al to a'. This and larger-variations in Za are observed for

different terrestrial rock powders (Campbell and Ulrichs,

1969).

The above--hypothesis leads us to ask whether a sys-

tematic difference in o, exists between highland and maria.

At present there is no direct evidence. There- is evidence,

however, that there may be a systematic difference in the

percentage of ilmenite between the two types of surface and

that the ilmenite-content is-directly related to oo. The

Surveyor alpha scattering experiments-have shown significant-

ly less titanium at the Surveyor VII highland site than at

the maria areas sampled. Measurements by Chung et al. (1970),

and Katsube-and- Coll.ett (1971) on returned lunar rocks re-

veal differences-in the ilmenite (FeOoTiO2) content from

rock to rock. Their data for the complex index-of refrac-

tion coupled with our calculations for wo show a one to one

correlation between ilmenite content and j,, such that the

less ilmenite the higher .oo Table 3.2 of section IX dis-

plays the results of the computation. For example, a sim-
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ulated lunar sample, with 4% ilmenite gives co = 0o87 while

the lunar sample with similar mineralogy but 16% ilmenite

gives wo = 0O52. Too much emphasis should not be placed on

this, however, because the e-ffects-of crystalline structure

and composition have not been well separated. The "average"

wo of ten lunar rocks measured-is 0.62 while the average of

the.low ilmenite-simulated lunar sample and an anorthrosite

proposed -by Wood(1970) for the lunar highlands is 0.84. The

data for anorthrosite was taken from the paper by Campbell

and Ulrichs (1969).

The possible correlation of co with the ilmenite or

heavy metal abundance deserves- further investigation. If

it can be-shown. that there is significant correlation then

maps of the depolarization ratio across the lunar surface

could be.interpreted, in light of our model, as mineralogi-

cal maps.. Not only could general differences- from maria to

highland be: interpreted this way, but.fresh craters of the

same morphology and apparent-rock distribution could serve

as localized probes of the mineralogy across the visible .

face of the moono Thus. radar could be used to map the moon

geologically.
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